import torch import torch.nn as nn # --------------------- Basic modules --------------------- class SiLU(nn.Module): """export-friendly version of nn.SiLU()""" @staticmethod def forward(x): return x * torch.sigmoid(x) def get_conv2d(c1, c2, k, p, s, g, bias=False): conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, groups=g, bias=bias) return conv def get_activation(act_type=None): if act_type == 'relu': return nn.ReLU(inplace=True) elif act_type == 'lrelu': return nn.LeakyReLU(0.1, inplace=True) elif act_type == 'mish': return nn.Mish(inplace=True) elif act_type == 'silu': return nn.SiLU(inplace=True) elif act_type is None: return nn.Identity() else: raise NotImplementedError def get_norm(norm_type, dim): if norm_type == 'BN': return nn.BatchNorm2d(dim) elif norm_type == 'GN': return nn.GroupNorm(num_groups=32, num_channels=dim) elif norm_type is None: return nn.Identity() else: raise NotImplementedError class BasicConv(nn.Module): def __init__(self, in_dim, # in channels out_dim, # out channels kernel_size :int = 1, # kernel size padding :int = 0, # padding stride :int = 1, # padding act_type :str = 'silu', # activation norm_type :str = 'BN', # normalization depthwise :bool = False, ): super(BasicConv, self).__init__() self.depthwise = depthwise add_bias = False if norm_type else True if not depthwise: self.conv = get_conv2d(in_dim, out_dim, k=kernel_size, p=padding, s=stride, g=1, bias=add_bias) self.norm = get_norm(norm_type, out_dim) self.act = get_activation(act_type) else: self.conv1 = get_conv2d(in_dim, in_dim, k=kernel_size, p=padding, s=stride, g=in_dim, bias=add_bias) self.norm1 = get_norm(norm_type, in_dim) self.conv2 = get_conv2d(in_dim, out_dim, k=1, d=0, s=1, g=1, bias=add_bias) self.norm2 = get_norm(norm_type, out_dim) self.act = get_activation(act_type) def forward(self, x): if not self.depthwise: return self.act(self.norm(self.conv(x))) else: return self.act(self.norm2(self.conv2(self.norm1(self.conv1(x))))) # --------------------- Yolov8 modules --------------------- ## Yolov8 BottleNeck class Bottleneck(nn.Module): def __init__(self, in_dim, out_dim, expand_ratio = 0.5, kernel_sizes = [3, 3], shortcut = True, act_type = 'silu', norm_type = 'BN', depthwise = False,): super(Bottleneck, self).__init__() inter_dim = int(out_dim * expand_ratio) # hidden channels padding_sizes = [k // 2 for k in kernel_sizes] self.cv1 = BasicConv(in_dim, inter_dim, kernel_size=kernel_sizes[0], padding=padding_sizes[0], act_type=act_type, norm_type=norm_type, depthwise=depthwise) self.cv2 = BasicConv(inter_dim, out_dim, kernel_size=kernel_sizes[1], padding=padding_sizes[1], act_type=act_type, norm_type=norm_type, depthwise=depthwise) self.shortcut = shortcut and in_dim == out_dim def forward(self, x): h = self.cv2(self.cv1(x)) return x + h if self.shortcut else h # Yolov8 StageBlock class RTCBlock(nn.Module): def __init__(self, in_dim, out_dim, num_blocks = 1, shortcut = False, act_type = 'silu', norm_type = 'BN', depthwise = False,): super(RTCBlock, self).__init__() self.inter_dim = out_dim // 2 self.input_proj = BasicConv(in_dim, out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type) self.m = nn.ModuleList([ Bottleneck(self.inter_dim, self.inter_dim, 1.0, [1, 3], shortcut, act_type, norm_type, depthwise) for _ in range(num_blocks)]) self.output_proj = BasicConv((2 + num_blocks) * self.inter_dim, out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type) def forward(self, x): # Input proj x1, x2 = torch.chunk(self.input_proj(x), 2, dim=1) out = list([x1, x2]) # Bottleneck out.extend(m(out[-1]) for m in self.m) # Output proj out = self.output_proj(torch.cat(out, dim=1)) return out