#!/usr/bin/env python3 # -*- coding:utf-8 -*- import torch import torch.nn as nn from .loss import build_criterion from .yolov5 import YOLOv5 # build object detector def build_yolov5(args, cfg, device, num_classes=80, trainable=False, deploy=False): print('==============================') print('Build {} ...'.format(args.model.upper())) print('==============================') print('Model Configuration: \n', cfg) # -------------- Build YOLO -------------- model = YOLOv5(cfg = cfg, device = device, num_classes = num_classes, trainable = trainable, conf_thresh = args.conf_thresh, nms_thresh = args.nms_thresh, topk = args.topk, deploy = deploy, no_multi_labels = args.no_multi_labels, nms_class_agnostic = args.nms_class_agnostic ) # -------------- Initialize YOLO -------------- for m in model.modules(): if isinstance(m, nn.BatchNorm2d): m.eps = 1e-3 m.momentum = 0.03 # Init bias init_prob = 0.01 bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob)) # obj pred for obj_pred in model.obj_preds: b = obj_pred.bias.view(1, -1) b.data.fill_(bias_value.item()) obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) # cls pred for cls_pred in model.cls_preds: b = cls_pred.bias.view(1, -1) b.data.fill_(bias_value.item()) cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) # reg pred for reg_pred in model.reg_preds: b = reg_pred.bias.view(-1, ) b.data.fill_(1.0) reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) w = reg_pred.weight w.data.fill_(0.) reg_pred.weight = torch.nn.Parameter(w, requires_grad=True) # -------------- Build criterion -------------- criterion = None if trainable: # build criterion for training criterion = build_criterion(cfg, device, num_classes) return model, criterion