|
|
@@ -94,21 +94,21 @@ python train.py --cuda -d coco --root path/to/COCO -m yolov1 -bs 16 --max_epoch
|
|
|
| YOLOv1 | ResNet-18 | 640 | 150 | 27.9 | 47.5 | 37.8 | 21.3 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov1_coco.pth) |
|
|
|
| YOLOv2 | DarkNet-19 | 640 | 150 | 32.7 | 50.9 | 53.9 | 30.9 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov2_coco.pth) |
|
|
|
|
|
|
-* YOLOv3:
|
|
|
+#### YOLOv3:
|
|
|
|
|
|
| Model | Backbone | Scale | Epoch | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
|---------------|--------------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|
|
|
|
| YOLOv3-Tiny | DarkNet-Tiny | 640 | 250 | 25.4 | 43.4 | 7.0 | 2.3 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov3_t_coco.pth) |
|
|
|
| YOLOv3 | DarkNet-53 | 640 | 250 | 42.9 | 63.5 | 167.4 | 54.9 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov3_coco.pth) |
|
|
|
|
|
|
-* YOLOv4:
|
|
|
+#### YOLOv4:
|
|
|
|
|
|
| Model | Backbone | Scale | Epoch | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
|---------------|--------------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|
|
|
|
| YOLOv4-Tiny | CSPDarkNet-Tiny | 640 | 250 | 31.0 | 49.1 | 8.1 | 2.9 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov4_t_coco.pth) |
|
|
|
| YOLOv4 | CSPDarkNet-53 | 640 | 250 | 46.6 | 65.8 | 162.7 | 61.5 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov4_coco.pth) |
|
|
|
|
|
|
-* YOLOv5:
|
|
|
+#### YOLOv5:
|
|
|
|
|
|
| Model | Backbone | Scale | Epoch | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
|-----------|--------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|
|
|
|
@@ -119,7 +119,7 @@ python train.py --cuda -d coco --root path/to/COCO -m yolov1 -bs 16 --max_epoch
|
|
|
|
|
|
*For **YOLOv5-M** and **YOLOv5-L**, increasing the batch size may improve performance. Due to my computing resources, I can only set the batch size to 16.*
|
|
|
|
|
|
-* YOLOX:
|
|
|
+#### YOLOX:
|
|
|
|
|
|
| Model | Backbone | Scale | Epoch | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
|---------|---------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|
|
|
|
@@ -130,16 +130,16 @@ python train.py --cuda -d coco --root path/to/COCO -m yolov1 -bs 16 --max_epoch
|
|
|
|
|
|
*For **YOLOX-M** and **YOLOX-L**, increasing the batch size may improve performance. Due to my computing resources, I can only set the batch size to 16.*
|
|
|
|
|
|
-* YOLOv7:
|
|
|
+#### YOLOv7:
|
|
|
|
|
|
| Model | Backbone | Scale | Epoch | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
|-------------|---------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|
|
|
|
| YOLOv7-Tiny | ELANNet-Tiny | 640 | 300 | 38.0 | 56.8 | 22.6 | 7.9 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov7_tiny_coco.pth) |
|
|
|
| YOLOv7 | ELANNet-Large | 640 | 300 | 48.0 | 67.5 | 144.6 | 44.0 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov7_large_coco.pth) |
|
|
|
|
|
|
-*While YOLOv7 incorporates several technical details, such as anchor box, SimOTA, AuxiliaryHead, and RepConv, I found it too challenging to fully reproduce. Instead, I created a simpler version of YOLOv7 using an anchor-free structure and SimOTA. As a result, my reproduction had poor performance due to the absence of the other technical details. However, since it was only intended as a tutorial, I am not too concerned about this gap.*
|
|
|
+* While YOLOv7 incorporates several technical details, such as anchor box, SimOTA, AuxiliaryHead, and RepConv, I found it too challenging to fully reproduce. Instead, I created a simpler version of YOLOv7 using an anchor-free structure and SimOTA. As a result, my reproduction had poor performance due to the absence of the other technical details. However, since it was only intended as a tutorial, I am not too concerned about this gap.*
|
|
|
|
|
|
-* My YOLO:
|
|
|
+#### My YOLO:
|
|
|
|
|
|
| Model | Scale | Batch | AP<sup>test<br>0.5:0.95 | AP<sup>test<br>0.5 | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
|----------|-------|-------|-------------------------|--------------------|------------------------|-------------------|-------------------|--------------------|--------|
|
|
|
@@ -151,9 +151,11 @@ python train.py --cuda -d coco --root path/to/COCO -m yolov1 -bs 16 --max_epoch
|
|
|
| YOLOvx-L | 640 | 8xb16 | 50.2 | 68.6 | 50.0 | 68.4 | 176.6 | 47.6 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolovx_l_coco.pth) |
|
|
|
| YOLOvx-X | 640 | | | | | | | | |
|
|
|
|
|
|
-Due to my limited computing resources, I can not to train `YOLOvx-X` with the setting of `batch size=128`.
|
|
|
+- We use `AdamW` optimizer with `per_image_lr=0.001 / 64` and `linear` learning rate decay scheduler to train all models with 300 epoch.
|
|
|
+- We use `YOLOv5-style Mosaic augmentation` and `YOLOX-style Mixup augmentation` wihout rotation.
|
|
|
+- Due to my limited computing resources, I can not to train `YOLOvx-X` with the setting of `batch size=128`.
|
|
|
|
|
|
-* Redesigned RT-DETR:
|
|
|
+#### Redesigned RT-DETR:
|
|
|
|
|
|
| Model | Scale | Batch | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
|-----------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|
|