|
@@ -1,23 +1,17 @@
|
|
|
-# ---------------------------------------------------------------------
|
|
|
|
|
-# Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
|
-# ---------------------------------------------------------------------
|
|
|
|
|
-
|
|
|
|
|
-
|
|
|
|
|
import torch
|
|
import torch
|
|
|
import torch.nn.functional as F
|
|
import torch.nn.functional as F
|
|
|
from utils.box_ops import *
|
|
from utils.box_ops import *
|
|
|
|
|
|
|
|
|
|
|
|
|
-# RTMDet's Assigner
|
|
|
|
|
|
|
+# -------------------------- Aligned SimOTA Assigner --------------------------
|
|
|
class AlignedSimOTA(object):
|
|
class AlignedSimOTA(object):
|
|
|
"""
|
|
"""
|
|
|
- This code referenced to https://github.com/open-mmlab/mmyolo/models/task_modules/assigners/batch_dsl_assigner.py
|
|
|
|
|
|
|
+ This code referenced to https://github.com/Megvii-BaseDetection/YOLOX/blob/main/yolox/models/yolo_head.py
|
|
|
"""
|
|
"""
|
|
|
- def __init__(self, num_classes=80, soft_center_radius=3.0, topk_candidate=13, iou_weight=3.0):
|
|
|
|
|
|
|
+ def __init__(self, num_classes, center_sampling_radius, topk_candidate ):
|
|
|
self.num_classes = num_classes
|
|
self.num_classes = num_classes
|
|
|
- self.soft_center_radius = soft_center_radius
|
|
|
|
|
|
|
+ self.center_sampling_radius = center_sampling_radius
|
|
|
self.topk_candidate = topk_candidate
|
|
self.topk_candidate = topk_candidate
|
|
|
- self.iou_weight = iou_weight
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.no_grad()
|
|
@@ -26,151 +20,160 @@ class AlignedSimOTA(object):
|
|
|
anchors,
|
|
anchors,
|
|
|
pred_cls,
|
|
pred_cls,
|
|
|
pred_box,
|
|
pred_box,
|
|
|
- gt_labels,
|
|
|
|
|
- gt_bboxes):
|
|
|
|
|
|
|
+ tgt_labels,
|
|
|
|
|
+ tgt_bboxes):
|
|
|
# [M,]
|
|
# [M,]
|
|
|
- strides = torch.cat([torch.ones_like(anchor_i[:, 0]) * stride_i
|
|
|
|
|
|
|
+ strides_tensor = torch.cat([torch.ones_like(anchor_i[:, 0]) * stride_i
|
|
|
for stride_i, anchor_i in zip(fpn_strides, anchors)], dim=-1)
|
|
for stride_i, anchor_i in zip(fpn_strides, anchors)], dim=-1)
|
|
|
# List[F, M, 2] -> [M, 2]
|
|
# List[F, M, 2] -> [M, 2]
|
|
|
anchors = torch.cat(anchors, dim=0)
|
|
anchors = torch.cat(anchors, dim=0)
|
|
|
- num_gt = len(gt_labels)
|
|
|
|
|
-
|
|
|
|
|
- # check gt
|
|
|
|
|
- if num_gt == 0 or gt_bboxes.max().item() == 0.:
|
|
|
|
|
- return {
|
|
|
|
|
- 'assigned_labels': gt_labels.new_full(pred_cls[..., 0].shape,
|
|
|
|
|
- self.num_classes,
|
|
|
|
|
- dtype=torch.long),
|
|
|
|
|
- 'assigned_bboxes': gt_bboxes.new_full(pred_box.shape, 0),
|
|
|
|
|
- 'assign_metrics': gt_bboxes.new_full(pred_cls[..., 0].shape, 0)
|
|
|
|
|
- }
|
|
|
|
|
-
|
|
|
|
|
- # get inside points: [N, M]
|
|
|
|
|
- is_in_gt = self.find_inside_points(gt_bboxes, anchors)
|
|
|
|
|
- valid_mask = is_in_gt.sum(dim=0) > 0 # [M,]
|
|
|
|
|
-
|
|
|
|
|
- # ----------------------------------- soft center prior -----------------------------------
|
|
|
|
|
- gt_center = (gt_bboxes[..., :2] + gt_bboxes[..., 2:]) / 2.0
|
|
|
|
|
- distance = (anchors.unsqueeze(0) - gt_center.unsqueeze(1)
|
|
|
|
|
- ).pow(2).sum(-1).sqrt() / strides.unsqueeze(0) # [N, M]
|
|
|
|
|
- distance = distance * valid_mask.unsqueeze(0)
|
|
|
|
|
- soft_center_prior = torch.pow(10, distance - self.soft_center_radius)
|
|
|
|
|
-
|
|
|
|
|
- # ----------------------------------- regression cost -----------------------------------
|
|
|
|
|
- pair_wise_ious, _ = box_iou(gt_bboxes, pred_box) # [N, M]
|
|
|
|
|
- pair_wise_ious_loss = -torch.log(pair_wise_ious + 1e-8) * self.iou_weight
|
|
|
|
|
-
|
|
|
|
|
- # ----------------------------------- classification cost -----------------------------------
|
|
|
|
|
- ## select the predicted scores corresponded to the gt_labels
|
|
|
|
|
- pairwise_pred_scores = pred_cls.permute(1, 0) # [M, C] -> [C, M]
|
|
|
|
|
- pairwise_pred_scores = pairwise_pred_scores[gt_labels.long(), :].float() # [N, M]
|
|
|
|
|
- ## scale factor
|
|
|
|
|
- scale_factor = (pair_wise_ious - pairwise_pred_scores.sigmoid()).abs().pow(2.0)
|
|
|
|
|
- ## cls cost
|
|
|
|
|
- pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
|
|
|
|
|
- pairwise_pred_scores, pair_wise_ious,
|
|
|
|
|
- reduction="none") * scale_factor # [N, M]
|
|
|
|
|
-
|
|
|
|
|
- del pairwise_pred_scores
|
|
|
|
|
-
|
|
|
|
|
- ## foreground cost matrix
|
|
|
|
|
- cost_matrix = pair_wise_cls_loss + pair_wise_ious_loss + soft_center_prior
|
|
|
|
|
- max_pad_value = torch.ones_like(cost_matrix) * 1e9
|
|
|
|
|
- cost_matrix = torch.where(valid_mask[None].repeat(num_gt, 1), # [N, M]
|
|
|
|
|
- cost_matrix, max_pad_value)
|
|
|
|
|
-
|
|
|
|
|
- # ----------------------------------- dynamic label assignment -----------------------------------
|
|
|
|
|
|
|
+ num_anchor = anchors.shape[0]
|
|
|
|
|
+ num_gt = len(tgt_labels)
|
|
|
|
|
+
|
|
|
|
|
+ # ----------------------- Find inside points -----------------------
|
|
|
|
|
+ fg_mask, is_in_boxes_and_center = self.get_in_boxes_info(
|
|
|
|
|
+ tgt_bboxes, anchors, strides_tensor, num_anchor, num_gt)
|
|
|
|
|
+ cls_preds = pred_cls[fg_mask].float() # [Mp, C]
|
|
|
|
|
+ box_preds = pred_box[fg_mask].float() # [Mp, 4]
|
|
|
|
|
+
|
|
|
|
|
+ # ----------------------- Reg cost -----------------------
|
|
|
|
|
+ pair_wise_ious, _ = box_iou(tgt_bboxes, box_preds) # [N, Mp]
|
|
|
|
|
+ reg_cost = -torch.log(pair_wise_ious + 1e-8) # [N, Mp]
|
|
|
|
|
+
|
|
|
|
|
+ # ----------------------- Cls cost -----------------------
|
|
|
|
|
+ with torch.cuda.amp.autocast(enabled=False):
|
|
|
|
|
+ # [Mp, C] -> [N, Mp, C]
|
|
|
|
|
+ score_preds = cls_preds.sigmoid_().unsqueeze(0).repeat(num_gt, 1, 1)
|
|
|
|
|
+ # prepare cls_target
|
|
|
|
|
+ cls_targets = F.one_hot(tgt_labels.long(), self.num_classes).float()
|
|
|
|
|
+ cls_targets = cls_targets.unsqueeze(1).repeat(1, score_preds.size(1), 1)
|
|
|
|
|
+ cls_targets *= pair_wise_ious.unsqueeze(-1) # iou-aware
|
|
|
|
|
+ # [N, Mp]
|
|
|
|
|
+ cls_cost = F.binary_cross_entropy(score_preds, cls_targets, reduction="none").sum(-1)
|
|
|
|
|
+ del score_preds
|
|
|
|
|
+
|
|
|
|
|
+ #----------------------- Dynamic K-Matching -----------------------
|
|
|
|
|
+ cost_matrix = (
|
|
|
|
|
+ cls_cost
|
|
|
|
|
+ + 3.0 * reg_cost
|
|
|
|
|
+ + 100000.0 * (~is_in_boxes_and_center)
|
|
|
|
|
+ ) # [N, Mp]
|
|
|
|
|
+
|
|
|
(
|
|
(
|
|
|
- matched_pred_ious,
|
|
|
|
|
- matched_gt_inds,
|
|
|
|
|
- fg_mask_inboxes
|
|
|
|
|
|
|
+ assigned_labels, # [num_fg,]
|
|
|
|
|
+ assigned_ious, # [num_fg,]
|
|
|
|
|
+ assigned_indexs, # [num_fg,]
|
|
|
) = self.dynamic_k_matching(
|
|
) = self.dynamic_k_matching(
|
|
|
cost_matrix,
|
|
cost_matrix,
|
|
|
pair_wise_ious,
|
|
pair_wise_ious,
|
|
|
- num_gt
|
|
|
|
|
- )
|
|
|
|
|
- del pair_wise_cls_loss, cost_matrix, pair_wise_ious, pair_wise_ious_loss
|
|
|
|
|
-
|
|
|
|
|
- # -----------------------------------process assigned labels -----------------------------------
|
|
|
|
|
- assigned_labels = gt_labels.new_full(pred_cls[..., 0].shape,
|
|
|
|
|
- self.num_classes) # [M,]
|
|
|
|
|
- assigned_labels[fg_mask_inboxes] = gt_labels[matched_gt_inds].squeeze(-1)
|
|
|
|
|
- assigned_labels = assigned_labels.long() # [M,]
|
|
|
|
|
-
|
|
|
|
|
- assigned_bboxes = gt_bboxes.new_full(pred_box.shape, 0) # [M, 4]
|
|
|
|
|
- assigned_bboxes[fg_mask_inboxes] = gt_bboxes[matched_gt_inds] # [M, 4]
|
|
|
|
|
-
|
|
|
|
|
- assign_metrics = gt_bboxes.new_full(pred_cls[..., 0].shape, 0) # [M, 4]
|
|
|
|
|
- assign_metrics[fg_mask_inboxes] = matched_pred_ious # [M, 4]
|
|
|
|
|
-
|
|
|
|
|
- assigned_dict = dict(
|
|
|
|
|
- assigned_labels=assigned_labels,
|
|
|
|
|
- assigned_bboxes=assigned_bboxes,
|
|
|
|
|
- assign_metrics=assign_metrics
|
|
|
|
|
|
|
+ tgt_labels,
|
|
|
|
|
+ num_gt,
|
|
|
|
|
+ fg_mask
|
|
|
)
|
|
)
|
|
|
|
|
+ del cls_cost, cost_matrix, pair_wise_ious, reg_cost
|
|
|
|
|
+
|
|
|
|
|
+ return fg_mask, assigned_labels, assigned_ious, assigned_indexs
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+ def get_in_boxes_info(
|
|
|
|
|
+ self,
|
|
|
|
|
+ gt_bboxes, # [N, 4]
|
|
|
|
|
+ anchors, # [M, 2]
|
|
|
|
|
+ strides, # [M,]
|
|
|
|
|
+ num_anchors, # M
|
|
|
|
|
+ num_gt, # N
|
|
|
|
|
+ ):
|
|
|
|
|
+ # anchor center
|
|
|
|
|
+ x_centers = anchors[:, 0]
|
|
|
|
|
+ y_centers = anchors[:, 1]
|
|
|
|
|
+
|
|
|
|
|
+ # [M,] -> [1, M] -> [N, M]
|
|
|
|
|
+ x_centers = x_centers.unsqueeze(0).repeat(num_gt, 1)
|
|
|
|
|
+ y_centers = y_centers.unsqueeze(0).repeat(num_gt, 1)
|
|
|
|
|
+
|
|
|
|
|
+ # [N,] -> [N, 1] -> [N, M]
|
|
|
|
|
+ gt_bboxes_l = gt_bboxes[:, 0].unsqueeze(1).repeat(1, num_anchors) # x1
|
|
|
|
|
+ gt_bboxes_t = gt_bboxes[:, 1].unsqueeze(1).repeat(1, num_anchors) # y1
|
|
|
|
|
+ gt_bboxes_r = gt_bboxes[:, 2].unsqueeze(1).repeat(1, num_anchors) # x2
|
|
|
|
|
+ gt_bboxes_b = gt_bboxes[:, 3].unsqueeze(1).repeat(1, num_anchors) # y2
|
|
|
|
|
+
|
|
|
|
|
+ b_l = x_centers - gt_bboxes_l
|
|
|
|
|
+ b_r = gt_bboxes_r - x_centers
|
|
|
|
|
+ b_t = y_centers - gt_bboxes_t
|
|
|
|
|
+ b_b = gt_bboxes_b - y_centers
|
|
|
|
|
+ bbox_deltas = torch.stack([b_l, b_t, b_r, b_b], 2)
|
|
|
|
|
+
|
|
|
|
|
+ is_in_boxes = bbox_deltas.min(dim=-1).values > 0.0
|
|
|
|
|
+ is_in_boxes_all = is_in_boxes.sum(dim=0) > 0
|
|
|
|
|
+ # in fixed center
|
|
|
|
|
+ center_radius = self.center_sampling_radius
|
|
|
|
|
+
|
|
|
|
|
+ # [N, 2]
|
|
|
|
|
+ gt_centers = (gt_bboxes[:, :2] + gt_bboxes[:, 2:]) * 0.5
|
|
|
|
|
|
|
|
- return assigned_dict
|
|
|
|
|
-
|
|
|
|
|
-
|
|
|
|
|
- def find_inside_points(self, gt_bboxes, anchors):
|
|
|
|
|
- """
|
|
|
|
|
- gt_bboxes: Tensor -> [N, 2]
|
|
|
|
|
- anchors: Tensor -> [M, 2]
|
|
|
|
|
- """
|
|
|
|
|
- num_anchors = anchors.shape[0]
|
|
|
|
|
- num_gt = gt_bboxes.shape[0]
|
|
|
|
|
-
|
|
|
|
|
- anchors_expand = anchors.unsqueeze(0).repeat(num_gt, 1, 1) # [N, M, 2]
|
|
|
|
|
- gt_bboxes_expand = gt_bboxes.unsqueeze(1).repeat(1, num_anchors, 1) # [N, M, 4]
|
|
|
|
|
-
|
|
|
|
|
- # offset
|
|
|
|
|
- lt = anchors_expand - gt_bboxes_expand[..., :2]
|
|
|
|
|
- rb = gt_bboxes_expand[..., 2:] - anchors_expand
|
|
|
|
|
- bbox_deltas = torch.cat([lt, rb], dim=-1)
|
|
|
|
|
-
|
|
|
|
|
- is_in_gts = bbox_deltas.min(dim=-1).values > 0
|
|
|
|
|
-
|
|
|
|
|
- return is_in_gts
|
|
|
|
|
|
|
+ # [1, M]
|
|
|
|
|
+ center_radius_ = center_radius * strides.unsqueeze(0)
|
|
|
|
|
+
|
|
|
|
|
+ gt_bboxes_l = gt_centers[:, 0].unsqueeze(1).repeat(1, num_anchors) - center_radius_ # x1
|
|
|
|
|
+ gt_bboxes_t = gt_centers[:, 1].unsqueeze(1).repeat(1, num_anchors) - center_radius_ # y1
|
|
|
|
|
+ gt_bboxes_r = gt_centers[:, 0].unsqueeze(1).repeat(1, num_anchors) + center_radius_ # x2
|
|
|
|
|
+ gt_bboxes_b = gt_centers[:, 1].unsqueeze(1).repeat(1, num_anchors) + center_radius_ # y2
|
|
|
|
|
+
|
|
|
|
|
+ c_l = x_centers - gt_bboxes_l
|
|
|
|
|
+ c_r = gt_bboxes_r - x_centers
|
|
|
|
|
+ c_t = y_centers - gt_bboxes_t
|
|
|
|
|
+ c_b = gt_bboxes_b - y_centers
|
|
|
|
|
+ center_deltas = torch.stack([c_l, c_t, c_r, c_b], 2)
|
|
|
|
|
+ is_in_centers = center_deltas.min(dim=-1).values > 0.0
|
|
|
|
|
+ is_in_centers_all = is_in_centers.sum(dim=0) > 0
|
|
|
|
|
+
|
|
|
|
|
+ # in boxes and in centers
|
|
|
|
|
+ is_in_boxes_anchor = is_in_boxes_all | is_in_centers_all
|
|
|
|
|
+
|
|
|
|
|
+ is_in_boxes_and_center = (
|
|
|
|
|
+ is_in_boxes[:, is_in_boxes_anchor] & is_in_centers[:, is_in_boxes_anchor]
|
|
|
|
|
+ )
|
|
|
|
|
+ return is_in_boxes_anchor, is_in_boxes_and_center
|
|
|
|
|
|
|
|
-
|
|
|
|
|
- def dynamic_k_matching(self, cost_matrix, pairwise_ious, num_gt):
|
|
|
|
|
- """Use IoU and matching cost to calculate the dynamic top-k positive
|
|
|
|
|
- targets.
|
|
|
|
|
-
|
|
|
|
|
- Args:
|
|
|
|
|
- cost_matrix (Tensor): Cost matrix.
|
|
|
|
|
- pairwise_ious (Tensor): Pairwise iou matrix.
|
|
|
|
|
- num_gt (int): Number of gt.
|
|
|
|
|
- valid_mask (Tensor): Mask for valid bboxes.
|
|
|
|
|
- Returns:
|
|
|
|
|
- tuple: matched ious and gt indexes.
|
|
|
|
|
- """
|
|
|
|
|
- matching_matrix = torch.zeros_like(cost_matrix, dtype=torch.uint8)
|
|
|
|
|
- # select candidate topk ious for dynamic-k calculation
|
|
|
|
|
- candidate_topk = min(self.topk_candidate, pairwise_ious.size(1))
|
|
|
|
|
- topk_ious, _ = torch.topk(pairwise_ious, candidate_topk, dim=1)
|
|
|
|
|
- # calculate dynamic k for each gt
|
|
|
|
|
|
|
+
|
|
|
|
|
+ def dynamic_k_matching(
|
|
|
|
|
+ self,
|
|
|
|
|
+ cost,
|
|
|
|
|
+ pair_wise_ious,
|
|
|
|
|
+ gt_classes,
|
|
|
|
|
+ num_gt,
|
|
|
|
|
+ fg_mask
|
|
|
|
|
+ ):
|
|
|
|
|
+ # Dynamic K
|
|
|
|
|
+ # ---------------------------------------------------------------
|
|
|
|
|
+ matching_matrix = torch.zeros_like(cost, dtype=torch.uint8)
|
|
|
|
|
+
|
|
|
|
|
+ ious_in_boxes_matrix = pair_wise_ious
|
|
|
|
|
+ n_candidate_k = min(self.topk_candidate, ious_in_boxes_matrix.size(1))
|
|
|
|
|
+ topk_ious, _ = torch.topk(ious_in_boxes_matrix, n_candidate_k, dim=1)
|
|
|
dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1)
|
|
dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1)
|
|
|
-
|
|
|
|
|
- # sorting the batch cost matirx is faster than topk
|
|
|
|
|
- _, sorted_indices = torch.sort(cost_matrix, dim=1)
|
|
|
|
|
|
|
+ dynamic_ks = dynamic_ks.tolist()
|
|
|
for gt_idx in range(num_gt):
|
|
for gt_idx in range(num_gt):
|
|
|
- topk_ids = sorted_indices[gt_idx, :dynamic_ks[gt_idx]]
|
|
|
|
|
- matching_matrix[gt_idx, :][topk_ids] = 1
|
|
|
|
|
-
|
|
|
|
|
- del topk_ious, dynamic_ks, topk_ids
|
|
|
|
|
|
|
+ _, pos_idx = torch.topk(
|
|
|
|
|
+ cost[gt_idx], k=dynamic_ks[gt_idx], largest=False
|
|
|
|
|
+ )
|
|
|
|
|
+ matching_matrix[gt_idx][pos_idx] = 1
|
|
|
|
|
|
|
|
- prior_match_gt_mask = matching_matrix.sum(0) > 1
|
|
|
|
|
- if prior_match_gt_mask.sum() > 0:
|
|
|
|
|
- cost_min, cost_argmin = torch.min(
|
|
|
|
|
- cost_matrix[:, prior_match_gt_mask], dim=0)
|
|
|
|
|
- matching_matrix[:, prior_match_gt_mask] *= 0
|
|
|
|
|
- matching_matrix[cost_argmin, prior_match_gt_mask] = 1
|
|
|
|
|
|
|
+ del topk_ious, dynamic_ks, pos_idx
|
|
|
|
|
|
|
|
- # get foreground mask inside box and center prior
|
|
|
|
|
|
|
+ anchor_matching_gt = matching_matrix.sum(0)
|
|
|
|
|
+ if (anchor_matching_gt > 1).sum() > 0:
|
|
|
|
|
+ _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
|
|
|
|
|
+ matching_matrix[:, anchor_matching_gt > 1] *= 0
|
|
|
|
|
+ matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1
|
|
|
fg_mask_inboxes = matching_matrix.sum(0) > 0
|
|
fg_mask_inboxes = matching_matrix.sum(0) > 0
|
|
|
- matched_pred_ious = (matching_matrix *
|
|
|
|
|
- pairwise_ious).sum(0)[fg_mask_inboxes]
|
|
|
|
|
- matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
|
|
|
|
|
|
|
|
|
|
- return matched_pred_ious, matched_gt_inds, fg_mask_inboxes
|
|
|
|
|
|
|
+ fg_mask[fg_mask.clone()] = fg_mask_inboxes
|
|
|
|
|
+
|
|
|
|
|
+ assigned_indexs = matching_matrix[:, fg_mask_inboxes].argmax(0)
|
|
|
|
|
+ assigned_labels = gt_classes[assigned_indexs]
|
|
|
|
|
+
|
|
|
|
|
+ assigned_ious = (matching_matrix * pair_wise_ious).sum(0)[
|
|
|
|
|
+ fg_mask_inboxes
|
|
|
|
|
+ ]
|
|
|
|
|
+ return assigned_labels, assigned_ious, assigned_indexs
|