|
|
@@ -41,35 +41,35 @@ class YoloTrainer(object):
|
|
|
|
|
|
# ---------------------------- Build Transform ----------------------------
|
|
|
self.train_transform, self.trans_cfg = build_transform(
|
|
|
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
+ args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
self.val_transform, _ = build_transform(
|
|
|
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
|
|
|
+ args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
|
|
|
|
|
|
# ---------------------------- Build Dataset & Dataloader ----------------------------
|
|
|
- self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
|
|
|
+ self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
|
|
|
world_size = distributed_utils.get_world_size()
|
|
|
- self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // world_size, CollateFunc())
|
|
|
+ self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // world_size, CollateFunc())
|
|
|
|
|
|
# ---------------------------- Build Evaluator ----------------------------
|
|
|
- self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
|
|
|
+ self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
|
|
|
|
|
|
# ---------------------------- Build Grad. Scaler ----------------------------
|
|
|
- self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
|
|
|
+ self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
|
|
|
|
|
|
# ---------------------------- Build Optimizer ----------------------------
|
|
|
- accumulate = max(1, round(64 / args.batch_size))
|
|
|
- self.model_cfg['weight_decay'] *= args.batch_size * accumulate / 64
|
|
|
- self.optimizer, self.start_epoch = build_yolo_optimizer(self.model_cfg, model, self.model_cfg['lr0'], args.resume)
|
|
|
+ accumulate = max(1, round(64 / self.args.batch_size))
|
|
|
+ self.model_cfg['weight_decay'] *= self.args.batch_size * accumulate / 64
|
|
|
+ self.optimizer, self.start_epoch = build_yolo_optimizer(self.model_cfg, model, self.model_cfg['lr0'], self.args.resume)
|
|
|
|
|
|
# ---------------------------- Build LR Scheduler ----------------------------
|
|
|
- args.max_epoch += args.wp_epoch
|
|
|
- self.lr_scheduler, self.lf = build_lr_scheduler(self.model_cfg, self.optimizer, args.max_epoch)
|
|
|
+ self.args.max_epoch += self.args.wp_epoch
|
|
|
+ self.lr_scheduler, self.lf = build_lr_scheduler(self.model_cfg, self.optimizer, self.args.max_epoch)
|
|
|
self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
|
|
|
- if args.resume:
|
|
|
+ if self.args.resume:
|
|
|
self.lr_scheduler.step()
|
|
|
|
|
|
# ---------------------------- Build Model-EMA ----------------------------
|
|
|
- if args.ema and distributed_utils.get_rank() in [-1, 0]:
|
|
|
+ if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
|
|
|
print('Build ModelEMA ...')
|
|
|
self.model_ema = ModelEMA(
|
|
|
model,
|
|
|
@@ -104,11 +104,67 @@ class YoloTrainer(object):
|
|
|
# eval one epoch
|
|
|
if self.heavy_eval:
|
|
|
model_eval = model.module if self.args.distributed else model
|
|
|
- self.eval_one_epoch(model_eval)
|
|
|
+ self.eval(model_eval)
|
|
|
else:
|
|
|
model_eval = model.module if self.args.distributed else model
|
|
|
if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
|
|
|
- self.eval_one_epoch(model_eval)
|
|
|
+ self.eval(model_eval)
|
|
|
+
|
|
|
+
|
|
|
+ def eval(self, model):
|
|
|
+ # chech model
|
|
|
+ model_eval = model if self.model_ema is None else self.model_ema.ema
|
|
|
+
|
|
|
+ # path to save model
|
|
|
+ path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
|
|
|
+ os.makedirs(path_to_save, exist_ok=True)
|
|
|
+
|
|
|
+ if distributed_utils.is_main_process():
|
|
|
+ # check evaluator
|
|
|
+ if self.evaluator is None:
|
|
|
+ print('No evaluator ... save model and go on training.')
|
|
|
+ print('Saving state, epoch: {}'.format(self.epoch + 1))
|
|
|
+ weight_name = '{}_no_eval.pth'.format(self.args.model)
|
|
|
+ checkpoint_path = os.path.join(path_to_save, weight_name)
|
|
|
+ torch.save({'model': model_eval.state_dict(),
|
|
|
+ 'mAP': -1.,
|
|
|
+ 'optimizer': self.optimizer.state_dict(),
|
|
|
+ 'epoch': self.epoch,
|
|
|
+ 'args': self.args},
|
|
|
+ checkpoint_path)
|
|
|
+ else:
|
|
|
+ print('eval ...')
|
|
|
+ # set eval mode
|
|
|
+ model_eval.trainable = False
|
|
|
+ model_eval.eval()
|
|
|
+
|
|
|
+ # evaluate
|
|
|
+ with torch.no_grad():
|
|
|
+ self.evaluator.evaluate(model_eval)
|
|
|
+
|
|
|
+ # save model
|
|
|
+ cur_map = self.evaluator.map
|
|
|
+ if cur_map > self.best_map:
|
|
|
+ # update best-map
|
|
|
+ self.best_map = cur_map
|
|
|
+ # save model
|
|
|
+ print('Saving state, epoch:', self.epoch + 1)
|
|
|
+ weight_name = '{}_best.pth'.format(self.args.model)
|
|
|
+ checkpoint_path = os.path.join(path_to_save, weight_name)
|
|
|
+ torch.save({'model': model_eval.state_dict(),
|
|
|
+ 'mAP': round(self.best_map*100, 1),
|
|
|
+ 'optimizer': self.optimizer.state_dict(),
|
|
|
+ 'epoch': self.epoch,
|
|
|
+ 'args': self.args},
|
|
|
+ checkpoint_path)
|
|
|
+
|
|
|
+ # set train mode.
|
|
|
+ model_eval.trainable = True
|
|
|
+ model_eval.train()
|
|
|
+
|
|
|
+ if self.args.distributed:
|
|
|
+ # wait for all processes to synchronize
|
|
|
+ dist.barrier()
|
|
|
|
|
|
|
|
|
def train_one_epoch(self, model):
|
|
|
@@ -210,63 +266,6 @@ class YoloTrainer(object):
|
|
|
self.epoch += 1
|
|
|
|
|
|
|
|
|
- def eval(self, model):
|
|
|
- # chech model
|
|
|
- model_eval = model if self.model_ema is None else self.model_ema.ema
|
|
|
-
|
|
|
- # path to save model
|
|
|
- path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
|
|
|
- os.makedirs(path_to_save, exist_ok=True)
|
|
|
-
|
|
|
- if distributed_utils.is_main_process():
|
|
|
- # check evaluator
|
|
|
- if self.evaluator is None:
|
|
|
- print('No evaluator ... save model and go on training.')
|
|
|
- print('Saving state, epoch: {}'.format(self.epoch + 1))
|
|
|
- weight_name = '{}_no_eval.pth'.format(self.args.model)
|
|
|
- checkpoint_path = os.path.join(path_to_save, weight_name)
|
|
|
- torch.save({'model': model_eval.state_dict(),
|
|
|
- 'mAP': -1.,
|
|
|
- 'optimizer': self.optimizer.state_dict(),
|
|
|
- 'epoch': self.epoch,
|
|
|
- 'args': self.args},
|
|
|
- checkpoint_path)
|
|
|
-
|
|
|
- else:
|
|
|
- print('eval ...')
|
|
|
- # set eval mode
|
|
|
- model_eval.trainable = False
|
|
|
- model_eval.eval()
|
|
|
-
|
|
|
- # evaluate
|
|
|
- with torch.no_grad():
|
|
|
- self.evaluator.evaluate(model_eval)
|
|
|
-
|
|
|
- # save model
|
|
|
- cur_map = self.evaluator.map
|
|
|
- if cur_map > self.best_map:
|
|
|
- # update best-map
|
|
|
- self.best_map = cur_map
|
|
|
- # save model
|
|
|
- print('Saving state, epoch:', self.epoch + 1)
|
|
|
- weight_name = '{}_best.pth'.format(self.args.model)
|
|
|
- checkpoint_path = os.path.join(path_to_save, weight_name)
|
|
|
- torch.save({'model': model_eval.state_dict(),
|
|
|
- 'mAP': round(self.best_map*100, 1),
|
|
|
- 'optimizer': self.optimizer.state_dict(),
|
|
|
- 'epoch': self.epoch,
|
|
|
- 'args': self.args},
|
|
|
- checkpoint_path)
|
|
|
-
|
|
|
- # set train mode.
|
|
|
- model_eval.trainable = True
|
|
|
- model_eval.train()
|
|
|
-
|
|
|
- if self.args.distributed:
|
|
|
- # wait for all processes to synchronize
|
|
|
- dist.barrier()
|
|
|
-
|
|
|
-
|
|
|
def refine_targets(self, targets, min_box_size):
|
|
|
# rescale targets
|
|
|
for tgt in targets:
|
|
|
@@ -341,34 +340,34 @@ class DetrTrainer(object):
|
|
|
|
|
|
# ---------------------------- Build Transform ----------------------------
|
|
|
self.train_transform, self.trans_cfg = build_transform(
|
|
|
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
+ args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
self.val_transform, _ = build_transform(
|
|
|
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
|
|
|
+ args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
|
|
|
|
|
|
# ---------------------------- Build Dataset & Dataloader ----------------------------
|
|
|
- self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
|
|
|
+ self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
|
|
|
world_size = distributed_utils.get_world_size()
|
|
|
- self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // world_size, CollateFunc())
|
|
|
+ self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // world_size, CollateFunc())
|
|
|
|
|
|
# ---------------------------- Build Evaluator ----------------------------
|
|
|
- self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
|
|
|
+ self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
|
|
|
|
|
|
# ---------------------------- Build Grad. Scaler ----------------------------
|
|
|
- self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
|
|
|
+ self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
|
|
|
|
|
|
# ---------------------------- Build Optimizer ----------------------------
|
|
|
- self.model_cfg['lr0'] *= args.batch_size / 16.
|
|
|
- self.optimizer, self.start_epoch = build_detr_optimizer(model_cfg, model, args.resume)
|
|
|
+ self.model_cfg['lr0'] *= self.args.batch_size / 16.
|
|
|
+ self.optimizer, self.start_epoch = build_detr_optimizer(model_cfg, model, self.args.resume)
|
|
|
|
|
|
# ---------------------------- Build LR Scheduler ----------------------------
|
|
|
- args.max_epoch += args.wp_epoch
|
|
|
- self.lr_scheduler, self.lf = build_lr_scheduler(self.model_cfg, self.optimizer, args.max_epoch)
|
|
|
+ self.args.max_epoch += self.args.wp_epoch
|
|
|
+ self.lr_scheduler, self.lf = build_lr_scheduler(self.model_cfg, self.optimizer, self.args.max_epoch)
|
|
|
self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
|
|
|
- if args.resume:
|
|
|
+ if self.args.resume:
|
|
|
self.lr_scheduler.step()
|
|
|
|
|
|
# ---------------------------- Build Model-EMA ----------------------------
|
|
|
- if args.ema and distributed_utils.get_rank() in [-1, 0]:
|
|
|
+ if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
|
|
|
print('Build ModelEMA ...')
|
|
|
self.model_ema = ModelEMA(
|
|
|
model,
|
|
|
@@ -403,11 +402,67 @@ class DetrTrainer(object):
|
|
|
# eval one epoch
|
|
|
if self.heavy_eval:
|
|
|
model_eval = model.module if self.args.distributed else model
|
|
|
- self.eval_one_epoch(model_eval)
|
|
|
+ self.eval(model_eval)
|
|
|
else:
|
|
|
model_eval = model.module if self.args.distributed else model
|
|
|
if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
|
|
|
- self.eval_one_epoch(model_eval)
|
|
|
+ self.eval(model_eval)
|
|
|
+
|
|
|
+
|
|
|
+ def eval(self, model):
|
|
|
+ # chech model
|
|
|
+ model_eval = model if self.model_ema is None else self.model_ema.ema
|
|
|
+
|
|
|
+ # path to save model
|
|
|
+ path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
|
|
|
+ os.makedirs(path_to_save, exist_ok=True)
|
|
|
+
|
|
|
+ if distributed_utils.is_main_process():
|
|
|
+ # check evaluator
|
|
|
+ if self.evaluator is None:
|
|
|
+ print('No evaluator ... save model and go on training.')
|
|
|
+ print('Saving state, epoch: {}'.format(self.epoch + 1))
|
|
|
+ weight_name = '{}_no_eval.pth'.format(self.args.model)
|
|
|
+ checkpoint_path = os.path.join(path_to_save, weight_name)
|
|
|
+ torch.save({'model': model_eval.state_dict(),
|
|
|
+ 'mAP': -1.,
|
|
|
+ 'optimizer': self.optimizer.state_dict(),
|
|
|
+ 'epoch': self.epoch,
|
|
|
+ 'args': self.args},
|
|
|
+ checkpoint_path)
|
|
|
+ else:
|
|
|
+ print('eval ...')
|
|
|
+ # set eval mode
|
|
|
+ model_eval.trainable = False
|
|
|
+ model_eval.eval()
|
|
|
+
|
|
|
+ # evaluate
|
|
|
+ with torch.no_grad():
|
|
|
+ self.evaluator.evaluate(model_eval)
|
|
|
+
|
|
|
+ # save model
|
|
|
+ cur_map = self.evaluator.map
|
|
|
+ if cur_map > self.best_map:
|
|
|
+ # update best-map
|
|
|
+ self.best_map = cur_map
|
|
|
+ # save model
|
|
|
+ print('Saving state, epoch:', self.epoch + 1)
|
|
|
+ weight_name = '{}_best.pth'.format(self.args.model)
|
|
|
+ checkpoint_path = os.path.join(path_to_save, weight_name)
|
|
|
+ torch.save({'model': model_eval.state_dict(),
|
|
|
+ 'mAP': round(self.best_map*100, 1),
|
|
|
+ 'optimizer': self.optimizer.state_dict(),
|
|
|
+ 'epoch': self.epoch,
|
|
|
+ 'args': self.args},
|
|
|
+ checkpoint_path)
|
|
|
+
|
|
|
+ # set train mode.
|
|
|
+ model_eval.trainable = True
|
|
|
+ model_eval.train()
|
|
|
+
|
|
|
+ if self.args.distributed:
|
|
|
+ # wait for all processes to synchronize
|
|
|
+ dist.barrier()
|
|
|
|
|
|
|
|
|
def train_one_epoch(self, model):
|
|
|
@@ -501,63 +556,6 @@ class DetrTrainer(object):
|
|
|
self.epoch += 1
|
|
|
|
|
|
|
|
|
- def eval(self, model):
|
|
|
- # chech model
|
|
|
- model_eval = model if self.model_ema is None else self.model_ema.ema
|
|
|
-
|
|
|
- # path to save model
|
|
|
- path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
|
|
|
- os.makedirs(path_to_save, exist_ok=True)
|
|
|
-
|
|
|
- if distributed_utils.is_main_process():
|
|
|
- # check evaluator
|
|
|
- if self.evaluator is None:
|
|
|
- print('No evaluator ... save model and go on training.')
|
|
|
- print('Saving state, epoch: {}'.format(self.epoch + 1))
|
|
|
- weight_name = '{}_no_eval.pth'.format(self.args.model)
|
|
|
- checkpoint_path = os.path.join(path_to_save, weight_name)
|
|
|
- torch.save({'model': model_eval.state_dict(),
|
|
|
- 'mAP': -1.,
|
|
|
- 'optimizer': self.optimizer.state_dict(),
|
|
|
- 'epoch': self.epoch,
|
|
|
- 'args': self.args},
|
|
|
- checkpoint_path)
|
|
|
-
|
|
|
- else:
|
|
|
- print('eval ...')
|
|
|
- # set eval mode
|
|
|
- model_eval.trainable = False
|
|
|
- model_eval.eval()
|
|
|
-
|
|
|
- # evaluate
|
|
|
- with torch.no_grad():
|
|
|
- self.evaluator.evaluate(model_eval)
|
|
|
-
|
|
|
- # save model
|
|
|
- cur_map = self.evaluator.map
|
|
|
- if cur_map > self.best_map:
|
|
|
- # update best-map
|
|
|
- self.best_map = cur_map
|
|
|
- # save model
|
|
|
- print('Saving state, epoch:', self.epoch + 1)
|
|
|
- weight_name = '{}_best.pth'.format(self.args.model)
|
|
|
- checkpoint_path = os.path.join(path_to_save, weight_name)
|
|
|
- torch.save({'model': model_eval.state_dict(),
|
|
|
- 'mAP': round(self.best_map*100, 1),
|
|
|
- 'optimizer': self.optimizer.state_dict(),
|
|
|
- 'epoch': self.epoch,
|
|
|
- 'args': self.args},
|
|
|
- checkpoint_path)
|
|
|
-
|
|
|
- # set train mode.
|
|
|
- model_eval.trainable = True
|
|
|
- model_eval.train()
|
|
|
-
|
|
|
- if self.args.distributed:
|
|
|
- # wait for all processes to synchronize
|
|
|
- dist.barrier()
|
|
|
-
|
|
|
-
|
|
|
def refine_targets(self, targets, min_box_size, img_size):
|
|
|
# rescale targets
|
|
|
for tgt in targets:
|