|
|
@@ -1,14 +1,171 @@
|
|
|
import torch
|
|
|
import torch.nn as nn
|
|
|
import torch.nn.functional as F
|
|
|
+import torch.distributed as dist
|
|
|
from torch.utils.data import DataLoader, DistributedSampler
|
|
|
-import torchvision
|
|
|
|
|
|
import cv2
|
|
|
import math
|
|
|
+import time
|
|
|
+import datetime
|
|
|
import numpy as np
|
|
|
from copy import deepcopy
|
|
|
from thop import profile
|
|
|
+from collections import defaultdict, deque
|
|
|
+
|
|
|
+from .distributed_utils import is_dist_avail_and_initialized
|
|
|
+
|
|
|
+
|
|
|
+# ---------------------------- Train tools ----------------------------
|
|
|
+class SmoothedValue(object):
|
|
|
+ """Track a series of values and provide access to smoothed values over a
|
|
|
+ window or the global series average.
|
|
|
+ """
|
|
|
+
|
|
|
+ def __init__(self, window_size=20, fmt=None):
|
|
|
+ if fmt is None:
|
|
|
+ fmt = "{median:.4f} ({global_avg:.4f})"
|
|
|
+ self.deque = deque(maxlen=window_size)
|
|
|
+ self.total = 0.0
|
|
|
+ self.count = 0
|
|
|
+ self.fmt = fmt
|
|
|
+
|
|
|
+ def update(self, value, n=1):
|
|
|
+ self.deque.append(value)
|
|
|
+ self.count += n
|
|
|
+ self.total += value * n
|
|
|
+
|
|
|
+ def synchronize_between_processes(self):
|
|
|
+ """
|
|
|
+ Warning: does not synchronize the deque!
|
|
|
+ """
|
|
|
+ if not is_dist_avail_and_initialized():
|
|
|
+ return
|
|
|
+ t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
|
|
|
+ dist.barrier()
|
|
|
+ dist.all_reduce(t)
|
|
|
+ t = t.tolist()
|
|
|
+ self.count = int(t[0])
|
|
|
+ self.total = t[1]
|
|
|
+
|
|
|
+ @property
|
|
|
+ def median(self):
|
|
|
+ d = torch.tensor(list(self.deque))
|
|
|
+ return d.median().item()
|
|
|
+
|
|
|
+ @property
|
|
|
+ def avg(self):
|
|
|
+ d = torch.tensor(list(self.deque), dtype=torch.float32)
|
|
|
+ return d.mean().item()
|
|
|
+
|
|
|
+ @property
|
|
|
+ def global_avg(self):
|
|
|
+ return self.total / self.count
|
|
|
+
|
|
|
+ @property
|
|
|
+ def max(self):
|
|
|
+ return max(self.deque)
|
|
|
+
|
|
|
+ @property
|
|
|
+ def value(self):
|
|
|
+ return self.deque[-1]
|
|
|
+
|
|
|
+ def __str__(self):
|
|
|
+ return self.fmt.format(
|
|
|
+ median=self.median,
|
|
|
+ avg=self.avg,
|
|
|
+ global_avg=self.global_avg,
|
|
|
+ max=self.max,
|
|
|
+ value=self.value)
|
|
|
+
|
|
|
+class MetricLogger(object):
|
|
|
+ def __init__(self, delimiter="\t"):
|
|
|
+ self.meters = defaultdict(SmoothedValue)
|
|
|
+ self.delimiter = delimiter
|
|
|
+
|
|
|
+ def update(self, **kwargs):
|
|
|
+ for k, v in kwargs.items():
|
|
|
+ if isinstance(v, torch.Tensor):
|
|
|
+ v = v.item()
|
|
|
+ assert isinstance(v, (float, int))
|
|
|
+ self.meters[k].update(v)
|
|
|
+
|
|
|
+ def __getattr__(self, attr):
|
|
|
+ if attr in self.meters:
|
|
|
+ return self.meters[attr]
|
|
|
+ if attr in self.__dict__:
|
|
|
+ return self.__dict__[attr]
|
|
|
+ raise AttributeError("'{}' object has no attribute '{}'".format(
|
|
|
+ type(self).__name__, attr))
|
|
|
+
|
|
|
+ def __str__(self):
|
|
|
+ loss_str = []
|
|
|
+ for name, meter in self.meters.items():
|
|
|
+ loss_str.append(
|
|
|
+ "{}: {}".format(name, str(meter))
|
|
|
+ )
|
|
|
+ return self.delimiter.join(loss_str)
|
|
|
+
|
|
|
+ def synchronize_between_processes(self):
|
|
|
+ for meter in self.meters.values():
|
|
|
+ meter.synchronize_between_processes()
|
|
|
+
|
|
|
+ def add_meter(self, name, meter):
|
|
|
+ self.meters[name] = meter
|
|
|
+
|
|
|
+ def log_every(self, iterable, print_freq, header=None):
|
|
|
+ i = 0
|
|
|
+ if not header:
|
|
|
+ header = ''
|
|
|
+ start_time = time.time()
|
|
|
+ end = time.time()
|
|
|
+ iter_time = SmoothedValue(fmt='{avg:.4f}')
|
|
|
+ data_time = SmoothedValue(fmt='{avg:.4f}')
|
|
|
+ space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
|
|
|
+ if torch.cuda.is_available():
|
|
|
+ log_msg = self.delimiter.join([
|
|
|
+ header,
|
|
|
+ '[{0' + space_fmt + '}/{1}]',
|
|
|
+ 'eta: {eta}',
|
|
|
+ '{meters}',
|
|
|
+ 'time: {time}',
|
|
|
+ 'data: {data}',
|
|
|
+ 'max mem: {memory:.0f}'
|
|
|
+ ])
|
|
|
+ else:
|
|
|
+ log_msg = self.delimiter.join([
|
|
|
+ header,
|
|
|
+ '[{0' + space_fmt + '}/{1}]',
|
|
|
+ 'eta: {eta}',
|
|
|
+ '{meters}',
|
|
|
+ 'time: {time}',
|
|
|
+ 'data: {data}'
|
|
|
+ ])
|
|
|
+ MB = 1024.0 * 1024.0
|
|
|
+ for obj in iterable:
|
|
|
+ data_time.update(time.time() - end)
|
|
|
+ yield obj
|
|
|
+ iter_time.update(time.time() - end)
|
|
|
+ if i % print_freq == 0 or i == len(iterable) - 1:
|
|
|
+ eta_seconds = iter_time.global_avg * (len(iterable) - i)
|
|
|
+ eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
|
|
|
+ if torch.cuda.is_available():
|
|
|
+ print(log_msg.format(
|
|
|
+ i, len(iterable), eta=eta_string,
|
|
|
+ meters=str(self),
|
|
|
+ time=str(iter_time), data=str(data_time),
|
|
|
+ memory=torch.cuda.max_memory_allocated() / MB))
|
|
|
+ else:
|
|
|
+ print(log_msg.format(
|
|
|
+ i, len(iterable), eta=eta_string,
|
|
|
+ meters=str(self),
|
|
|
+ time=str(iter_time), data=str(data_time)))
|
|
|
+ i += 1
|
|
|
+ end = time.time()
|
|
|
+ total_time = time.time() - start_time
|
|
|
+ total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
|
|
+ print('{} Total time: {} ({:.4f} s / it)'.format(
|
|
|
+ header, total_time_str, total_time / len(iterable)))
|
|
|
|
|
|
|
|
|
# ---------------------------- For Dataset ----------------------------
|