|
|
@@ -6,69 +6,73 @@ from .cnn_basic import (Conv, build_reduce_layer, build_downsample_layer, build_
|
|
|
|
|
|
|
|
|
# YOLO-Style PaFPN
|
|
|
-class YoloPaFPN(nn.Module):
|
|
|
- def __init__(self, cfg, in_dims=[256, 512, 1024], out_dim=None):
|
|
|
- super(YoloPaFPN, self).__init__()
|
|
|
+class YolovxPaFPN(nn.Module):
|
|
|
+ def __init__(self, cfg, in_dims=[512, 1024, 1024], out_dim=None, input_proj=False):
|
|
|
+ super(YolovxPaFPN, self).__init__()
|
|
|
# --------------------------- Basic Parameters ---------------------------
|
|
|
self.in_dims = in_dims
|
|
|
- c3, c4, c5 = in_dims
|
|
|
- width = cfg['width']
|
|
|
-
|
|
|
- # --------------------------- Network Parameters ---------------------------
|
|
|
- ## top dwon
|
|
|
- ### P5 -> P4
|
|
|
- self.reduce_layer_1 = build_reduce_layer(cfg, c5, round(512*width))
|
|
|
- self.reduce_layer_2 = build_reduce_layer(cfg, c4, round(512*width))
|
|
|
- self.top_down_layer_1 = build_fpn_block(cfg, round(512*width) + round(512*width), round(512*width))
|
|
|
-
|
|
|
- ### P4 -> P3
|
|
|
- self.reduce_layer_3 = build_reduce_layer(cfg, round(512*width), round(256*width))
|
|
|
- self.reduce_layer_4 = build_reduce_layer(cfg, c3, round(256*width))
|
|
|
- self.top_down_layer_2 = build_fpn_block(cfg, round(256*width) + round(256*width), round(256*width))
|
|
|
-
|
|
|
- ## bottom up
|
|
|
- ### P3 -> P4
|
|
|
- self.downsample_layer_1 = build_downsample_layer(cfg, round(256*width), round(256*width))
|
|
|
- self.bottom_up_layer_1 = build_fpn_block(cfg, round(256*width) + round(256*width), round(512*width))
|
|
|
-
|
|
|
- ### P4 -> P5
|
|
|
- self.downsample_layer_2 = build_downsample_layer(cfg, round(512*width), round(512*width))
|
|
|
- self.bottom_up_layer_2 = build_fpn_block(cfg, round(512*width) + round(512*width), round(1024*width))
|
|
|
+ if input_proj:
|
|
|
+ self.fpn_dims = [round(256*cfg['width']), round(512*cfg['width']), round(1024*cfg['width'])]
|
|
|
+ else:
|
|
|
+ self.fpn_dims = in_dims
|
|
|
+
|
|
|
+ # --------------------------- Input proj ---------------------------
|
|
|
+ self.input_projs = nn.ModuleList([nn.Conv2d(in_dim, fpn_dim, kernel_size=1)
|
|
|
+ for in_dim, fpn_dim in zip(in_dims, self.fpn_dims)])
|
|
|
+
|
|
|
+ # --------------------------- Top-down FPN---------------------------
|
|
|
+ ## P5 -> P4
|
|
|
+ self.reduce_layer_1 = build_reduce_layer(cfg, self.fpn_dims[2], self.fpn_dims[2]//2)
|
|
|
+ self.top_down_layer_1 = build_fpn_block(cfg, self.fpn_dims[1] + self.fpn_dims[2]//2, self.fpn_dims[1])
|
|
|
+
|
|
|
+ ## P4 -> P3
|
|
|
+ self.reduce_layer_2 = build_reduce_layer(cfg, self.fpn_dims[1], self.fpn_dims[1]//2)
|
|
|
+ self.top_down_layer_2 = build_fpn_block(cfg, self.fpn_dims[0] + self.fpn_dims[1]//2, self.fpn_dims[0])
|
|
|
+
|
|
|
+ # --------------------------- Bottom-up FPN ---------------------------
|
|
|
+ ## P3 -> P4
|
|
|
+ self.downsample_layer_1 = build_downsample_layer(cfg, self.fpn_dims[0], self.fpn_dims[0])
|
|
|
+ self.bottom_up_layer_1 = build_fpn_block(cfg, self.fpn_dims[0] + self.fpn_dims[1]//2, self.fpn_dims[1])
|
|
|
+
|
|
|
+ ## P4 -> P5
|
|
|
+ self.downsample_layer_2 = build_downsample_layer(cfg, self.fpn_dims[1], self.fpn_dims[1])
|
|
|
+ self.bottom_up_layer_2 = build_fpn_block(cfg, self.fpn_dims[1] + self.fpn_dims[2]//2, self.fpn_dims[2])
|
|
|
|
|
|
- ## output proj layers
|
|
|
+ # --------------------------- Output proj ---------------------------
|
|
|
if out_dim is not None:
|
|
|
self.out_layers = nn.ModuleList([
|
|
|
Conv(in_dim, out_dim, k=1,
|
|
|
act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm'])
|
|
|
- for in_dim in [round(256*width), round(512*width), round(1024*width)]
|
|
|
+ for in_dim in self.fpn_dims
|
|
|
])
|
|
|
self.out_dim = [out_dim] * 3
|
|
|
else:
|
|
|
self.out_layers = None
|
|
|
- self.out_dim = [round(256*width), round(512*width), round(1024*width)]
|
|
|
+ self.out_dim = self.fpn_dims
|
|
|
|
|
|
|
|
|
def forward(self, features):
|
|
|
- c3, c4, c5 = features
|
|
|
+ fpn_feats = [layer(feat) for feat, layer in zip(features, self.input_projs)]
|
|
|
+ c3, c4, c5 = fpn_feats
|
|
|
|
|
|
# Top down
|
|
|
## P5 -> P4
|
|
|
c6 = self.reduce_layer_1(c5)
|
|
|
- c7 = self.reduce_layer_2(c4)
|
|
|
- c8 = torch.cat([F.interpolate(c6, scale_factor=2.0), c7], dim=1)
|
|
|
+ c7 = F.interpolate(c6, scale_factor=2.0)
|
|
|
+ c8 = torch.cat([c7, c4], dim=1)
|
|
|
c9 = self.top_down_layer_1(c8)
|
|
|
## P4 -> P3
|
|
|
- c10 = self.reduce_layer_3(c9)
|
|
|
- c11 = self.reduce_layer_4(c3)
|
|
|
- c12 = torch.cat([F.interpolate(c10, scale_factor=2.0), c11], dim=1)
|
|
|
+ c10 = self.reduce_layer_2(c9)
|
|
|
+ c11 = F.interpolate(c10, scale_factor=2.0)
|
|
|
+ c12 = torch.cat([c11, c3], dim=1)
|
|
|
c13 = self.top_down_layer_2(c12)
|
|
|
|
|
|
# Bottom up
|
|
|
- # p3 -> P4
|
|
|
+ ## p3 -> P4
|
|
|
c14 = self.downsample_layer_1(c13)
|
|
|
c15 = torch.cat([c14, c10], dim=1)
|
|
|
c16 = self.bottom_up_layer_1(c15)
|
|
|
- # P4 -> P5
|
|
|
+ ## P4 -> P5
|
|
|
c17 = self.downsample_layer_2(c16)
|
|
|
c18 = torch.cat([c17, c6], dim=1)
|
|
|
c19 = self.bottom_up_layer_2(c18)
|
|
|
@@ -85,10 +89,10 @@ class YoloPaFPN(nn.Module):
|
|
|
return out_feats
|
|
|
|
|
|
|
|
|
-def build_fpn(cfg, in_dims, out_dim=None):
|
|
|
+def build_fpn(cfg, in_dims, out_dim=None, input_proj=False):
|
|
|
model = cfg['fpn']
|
|
|
# build pafpn
|
|
|
- if model == 'yolo_pafpn':
|
|
|
- fpn_net = YoloPaFPN(cfg, in_dims, out_dim)
|
|
|
+ if model == 'YolovxPaFPN':
|
|
|
+ fpn_net = YolovxPaFPN(cfg, in_dims, out_dim, input_proj)
|
|
|
|
|
|
return fpn_net
|