|
|
@@ -1133,13 +1133,17 @@ class RTRTrainer(object):
|
|
|
self.world_size = world_size
|
|
|
self.grad_accumulate = args.grad_accumulate
|
|
|
self.clip_grad = 0.1
|
|
|
+ self.heavy_eval = False
|
|
|
+ # weak augmentatino stage
|
|
|
+ self.second_stage = False
|
|
|
+ self.second_stage_epoch = args.no_aug_epoch
|
|
|
# path to save model
|
|
|
self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
|
|
|
os.makedirs(self.path_to_save, exist_ok=True)
|
|
|
|
|
|
# ---------------------------- Hyperparameters refer to RTMDet ----------------------------
|
|
|
self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 1e-4, 'lr0': 0.0001, 'backbone_lr_ratio': 0.1}
|
|
|
- self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.1}
|
|
|
+ self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.1, 'warmup_iters': 2000}
|
|
|
self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
|
|
|
|
|
|
# ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
|
|
|
@@ -1149,9 +1153,9 @@ class RTRTrainer(object):
|
|
|
|
|
|
# ---------------------------- Build Transform ----------------------------
|
|
|
self.train_transform, self.trans_cfg = build_transform(
|
|
|
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
+ args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['out_stride'][-1], is_train=True)
|
|
|
self.val_transform, _ = build_transform(
|
|
|
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
|
|
|
+ args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['out_stride'][-1], is_train=False)
|
|
|
|
|
|
# ---------------------------- Build Dataset & Dataloader ----------------------------
|
|
|
self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
|
|
|
@@ -1185,14 +1189,36 @@ class RTRTrainer(object):
|
|
|
if self.args.distributed:
|
|
|
self.train_loader.batch_sampler.sampler.set_epoch(epoch)
|
|
|
|
|
|
+ # check second stage
|
|
|
+ if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
|
|
|
+ self.check_second_stage()
|
|
|
+ # save model of the last mosaic epoch
|
|
|
+ weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
|
|
|
+ checkpoint_path = os.path.join(self.path_to_save, weight_name)
|
|
|
+ print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
|
|
|
+ torch.save({'model': model.state_dict(),
|
|
|
+ 'mAP': round(self.evaluator.map*100, 1),
|
|
|
+ 'optimizer': self.optimizer.state_dict(),
|
|
|
+ 'epoch': self.epoch,
|
|
|
+ 'args': self.args},
|
|
|
+ checkpoint_path)
|
|
|
+
|
|
|
# train one epoch
|
|
|
self.epoch = epoch
|
|
|
self.train_one_epoch(model)
|
|
|
|
|
|
# eval one epoch
|
|
|
- if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
|
|
|
+ if self.heavy_eval:
|
|
|
model_eval = model.module if self.args.distributed else model
|
|
|
self.eval(model_eval)
|
|
|
+ else:
|
|
|
+ model_eval = model.module if self.args.distributed else model
|
|
|
+ if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
|
|
|
+ self.eval(model_eval)
|
|
|
+
|
|
|
+ if self.args.debug:
|
|
|
+ print("For debug mode, we only train 1 epoch")
|
|
|
+ break
|
|
|
|
|
|
def eval(self, model):
|
|
|
# chech model
|
|
|
@@ -1214,7 +1240,6 @@ class RTRTrainer(object):
|
|
|
else:
|
|
|
print('eval ...')
|
|
|
# set eval mode
|
|
|
- model_eval.trainable = False
|
|
|
model_eval.eval()
|
|
|
|
|
|
# evaluate
|
|
|
@@ -1238,7 +1263,6 @@ class RTRTrainer(object):
|
|
|
checkpoint_path)
|
|
|
|
|
|
# set train mode.
|
|
|
- model_eval.trainable = True
|
|
|
model_eval.train()
|
|
|
|
|
|
if self.args.distributed:
|
|
|
@@ -1246,14 +1270,20 @@ class RTRTrainer(object):
|
|
|
dist.barrier()
|
|
|
|
|
|
def train_one_epoch(self, model):
|
|
|
+ metric_logger = MetricLogger(delimiter=" ")
|
|
|
+ metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
|
|
|
+ metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
|
|
|
+ header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
|
|
|
+ epoch_size = len(self.train_loader)
|
|
|
+ print_freq = 10
|
|
|
+
|
|
|
# basic parameters
|
|
|
epoch_size = len(self.train_loader)
|
|
|
img_size = self.args.img_size
|
|
|
- t0 = time.time()
|
|
|
- nw = epoch_size * self.args.wp_epoch
|
|
|
+ nw = self.lr_schedule_dict['warmup_iters']
|
|
|
|
|
|
# Train one epoch
|
|
|
- for iter_i, (images, targets) in enumerate(self.train_loader):
|
|
|
+ for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
|
|
|
ni = iter_i + self.epoch * epoch_size
|
|
|
# Warmup
|
|
|
if ni <= nw:
|
|
|
@@ -1267,24 +1297,21 @@ class RTRTrainer(object):
|
|
|
# Multi scale
|
|
|
if self.args.multi_scale:
|
|
|
images, targets, img_size = self.rescale_image_targets(
|
|
|
- images, targets, self.model_cfg['max_stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
|
|
|
+ images, targets, self.model_cfg['out_stride'][-1], self.args.min_box_size, self.model_cfg['multi_scale'])
|
|
|
else:
|
|
|
- targets = self.refine_targets(targets, self.args.min_box_size)
|
|
|
-
|
|
|
- # Normalize bbox
|
|
|
- targets = self.normalize_bbox(targets, img_size)
|
|
|
+ targets = self.refine_targets(img_size, targets, self.args.min_box_size)
|
|
|
|
|
|
# Visualize train targets
|
|
|
if self.args.vis_tgt:
|
|
|
- targets = self.denormalize_bbox(targets, img_size)
|
|
|
- vis_data(images*255, targets)
|
|
|
+ vis_data(images, targets, normalized_bbox=True,
|
|
|
+ pixel_mean=self.trans_cfg['pixel_mean'], pixel_std=self.trans_cfg['pixel_std'])
|
|
|
|
|
|
# Inference
|
|
|
with torch.cuda.amp.autocast(enabled=self.args.fp16):
|
|
|
- outputs = model(images)
|
|
|
+ outputs = model(images, targets)
|
|
|
# Compute loss
|
|
|
- loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
|
|
|
- losses = loss_dict['losses']
|
|
|
+ loss_dict = self.criterion(*outputs, targets)
|
|
|
+ losses = sum(loss_dict.values())
|
|
|
# Grad Accumulate
|
|
|
if self.grad_accumulate > 1:
|
|
|
losses /= self.grad_accumulate
|
|
|
@@ -1310,35 +1337,21 @@ class RTRTrainer(object):
|
|
|
if self.model_ema is not None:
|
|
|
self.model_ema.update(model)
|
|
|
|
|
|
- # Logs
|
|
|
- if distributed_utils.is_main_process() and iter_i % 10 == 0:
|
|
|
- t1 = time.time()
|
|
|
- cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
|
|
|
- # basic infor
|
|
|
- log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
|
|
|
- log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
|
|
|
- log += '[lr: {:.6f}]'.format(cur_lr[0])
|
|
|
- # loss infor
|
|
|
- for k in loss_dict_reduced.keys():
|
|
|
- loss_val = loss_dict_reduced[k]
|
|
|
- if k == 'losses':
|
|
|
- loss_val *= self.grad_accumulate
|
|
|
- log += '[{}: {:.2f}]'.format(k, loss_val)
|
|
|
- # other infor
|
|
|
- log += '[grad_norm: {:.2f}]'.format(grad_norm)
|
|
|
- log += '[time: {:.2f}]'.format(t1 - t0)
|
|
|
- log += '[size: {}]'.format(img_size)
|
|
|
+ # Update log
|
|
|
+ metric_logger.update(**loss_dict_reduced)
|
|
|
+ metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
|
|
|
+ metric_logger.update(grad_norm=grad_norm)
|
|
|
+ metric_logger.update(size=img_size)
|
|
|
+
|
|
|
+ if self.args.debug:
|
|
|
+ print("For debug mode, we only train 1 iteration")
|
|
|
+ break
|
|
|
|
|
|
- # print log infor
|
|
|
- print(log, flush=True)
|
|
|
-
|
|
|
- t0 = time.time()
|
|
|
-
|
|
|
# LR Schedule
|
|
|
if not self.second_stage:
|
|
|
self.lr_scheduler.step()
|
|
|
|
|
|
- def refine_targets(self, targets, min_box_size):
|
|
|
+ def refine_targets(self, img_size, targets, min_box_size):
|
|
|
# rescale targets
|
|
|
for tgt in targets:
|
|
|
boxes = tgt["boxes"].clone()
|
|
|
@@ -1347,26 +1360,15 @@ class RTRTrainer(object):
|
|
|
tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
|
|
|
min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
|
|
|
keep = (min_tgt_size >= min_box_size)
|
|
|
+ # normalize box
|
|
|
+ boxes[:, [0, 2]] = boxes[:, [0, 2]] / img_size
|
|
|
+ boxes[:, [1, 3]] = boxes[:, [1, 3]] / img_size
|
|
|
|
|
|
tgt["boxes"] = boxes[keep]
|
|
|
tgt["labels"] = labels[keep]
|
|
|
|
|
|
return targets
|
|
|
|
|
|
- def normalize_bbox(self, targets, img_size):
|
|
|
- # normalize targets
|
|
|
- for tgt in targets:
|
|
|
- tgt["boxes"] /= img_size
|
|
|
-
|
|
|
- return targets
|
|
|
-
|
|
|
- def denormalize_bbox(self, targets, img_size):
|
|
|
- # normalize targets
|
|
|
- for tgt in targets:
|
|
|
- tgt["boxes"] *= img_size
|
|
|
-
|
|
|
- return targets
|
|
|
-
|
|
|
def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
|
|
|
"""
|
|
|
Deployed for Multi scale trick.
|
|
|
@@ -1399,12 +1401,49 @@ class RTRTrainer(object):
|
|
|
tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
|
|
|
min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
|
|
|
keep = (min_tgt_size >= min_box_size)
|
|
|
+ # normalize box
|
|
|
+ boxes[:, [0, 2]] = boxes[:, [0, 2]] / new_img_size
|
|
|
+ boxes[:, [1, 3]] = boxes[:, [1, 3]] / new_img_size
|
|
|
|
|
|
tgt["boxes"] = boxes[keep]
|
|
|
tgt["labels"] = labels[keep]
|
|
|
|
|
|
return images, targets, new_img_size
|
|
|
|
|
|
+ def check_second_stage(self):
|
|
|
+ # set second stage
|
|
|
+ print('============== Second stage of Training ==============')
|
|
|
+ self.second_stage = True
|
|
|
+
|
|
|
+ # close mosaic augmentation
|
|
|
+ if self.train_loader.dataset.mosaic_prob > 0.:
|
|
|
+ print(' - Close < Mosaic Augmentation > ...')
|
|
|
+ self.train_loader.dataset.mosaic_prob = 0.
|
|
|
+ self.heavy_eval = True
|
|
|
+
|
|
|
+ # close mixup augmentation
|
|
|
+ if self.train_loader.dataset.mixup_prob > 0.:
|
|
|
+ print(' - Close < Mixup Augmentation > ...')
|
|
|
+ self.train_loader.dataset.mixup_prob = 0.
|
|
|
+ self.heavy_eval = True
|
|
|
+
|
|
|
+ # close rotation augmentation
|
|
|
+ if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
|
|
|
+ print(' - Close < degress of rotation > ...')
|
|
|
+ self.trans_cfg['degrees'] = 0.0
|
|
|
+ if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
|
|
|
+ print(' - Close < shear of rotation >...')
|
|
|
+ self.trans_cfg['shear'] = 0.0
|
|
|
+ if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
|
|
|
+ print(' - Close < perspective of rotation > ...')
|
|
|
+ self.trans_cfg['perspective'] = 0.0
|
|
|
+
|
|
|
+ # build a new transform for second stage
|
|
|
+ print(' - Rebuild transforms ...')
|
|
|
+ self.train_transform, self.trans_cfg = build_transform(
|
|
|
+ args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['out_stride'][-1], is_train=True)
|
|
|
+ self.train_loader.dataset.transform = self.train_transform
|
|
|
+
|
|
|
|
|
|
# ----------------------- Det + Seg trainers -----------------------
|
|
|
## RTCDet Trainer for Det + Seg
|