Kaynağa Gözat

update README

yjh0410 2 yıl önce
ebeveyn
işleme
e81d3e2d87
1 değiştirilmiş dosya ile 13 ekleme ve 13 silme
  1. 13 13
      README.md

+ 13 - 13
README.md

@@ -98,19 +98,19 @@ For example:
 python train.py --cuda -d coco --root path/to/COCO -v yolov1 -bs 16 --max_epoch 150 --wp_epoch 1 --eval_epoch 10 --fp16 --ema --multi_scale
 ```
 
-| Model         |   Backbone         | Scale |  IP  | Epoch |  FPS  | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
-|---------------|--------------------|-------|------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|
-| YOLOv1        | ResNet-18          |  640  |  √   |  150  |       |        27.9            |       47.5        |   37.8            |   21.3             | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov1_coco.pth) |
-| YOLOv2        | DarkNet-19         |  640  |  √   |  150  |       |        32.7            |       50.9        |   53.9            |   30.9             | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov2_coco.pth) |
-| YOLOv3        | DarkNet-53         |  640  |  √   |  250  |       |        42.9            |       63.5        |   167.4           |   54.9             | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov3_coco.pth) |
-| YOLOv4        | CSPDarkNet-53      |  640  |  √   |  250  |       |        46.6            |       65.8        |   162.7           |   61.5             | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov4_coco.pth) |
-| YOLOv5-N      | CSPDarkNet-N       |  640  |  √   |  250  |       |                        |                   |   7.7             |   2.4              |  |
-| YOLOv5-S      | CSPDarkNet-S       |  640  |  √   |  250  |       |                        |                   |   27.1            |   9.0              |  |
-| YOLOv5-M      | CSPDarkNet-M       |  640  |  √   |  250  |       |                        |                   |   74.3            |   25.4             |  |
-| YOLOv5-L      | CSPDarkNet-L       |  640  |  √   |  250  |       |                        |                   |   155.6           |   54.2             |  |
-| YOLOX-L       | CSPDarkNet-L       |  640  |  √   |  300  |       |        46.6            |       66.1        |   155.4           |   54.2             | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_coco.pth) |
-| YOLOv7-Tiny   | ELANNet-Tiny       |  640  |  √   |  300  |       |                        |                   |   22.9            |   8.1              |  |
-| YOLOv7-Large  | ELANNet-Large      |  640  |  √   |  300  |       |                        |                   |   144.6           |   44.0             |  |
+| Model         |   Backbone         | Scale | Epoch |  FPS  | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
+|---------------|--------------------|-------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|
+| YOLOv1        | ResNet-18          |  640  |  150  |       |        27.9            |       47.5        |   37.8            |   21.3             | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov1_coco.pth) |
+| YOLOv2        | DarkNet-19         |  640  |  150  |       |        32.7            |       50.9        |   53.9            |   30.9             | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov2_coco.pth) |
+| YOLOv3        | DarkNet-53         |  640  |  250  |       |        42.9            |       63.5        |   167.4           |   54.9             | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov3_coco.pth) |
+| YOLOv4        | CSPDarkNet-53      |  640  |  250  |       |        46.6            |       65.8        |   162.7           |   61.5             | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov4_coco.pth) |
+| YOLOv5-N      | CSPDarkNet-N       |  640  |  250  |       |                        |                   |   7.7             |   2.4              |  |
+| YOLOv5-S      | CSPDarkNet-S       |  640  |  250  |       |                        |                   |   27.1            |   9.0              |  |
+| YOLOv5-M      | CSPDarkNet-M       |  640  |  250  |       |                        |                   |   74.3            |   25.4             |  |
+| YOLOv5-L      | CSPDarkNet-L       |  640  |  250  |       |                        |                   |   155.6           |   54.2             |  |
+| YOLOX-L       | CSPDarkNet-L       |  640  |  300  |       |        46.6            |       66.1        |   155.4           |   54.2             | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_coco.pth) |
+| YOLOv7-Tiny   | ELANNet-Tiny       |  640  |  300  |       |                        |                   |   22.9            |   8.1              |  |
+| YOLOv7-Large  | ELANNet-Large      |  640  |  300  |       |                        |                   |   144.6           |   44.0             |  |
 
 *All models are trained with ImageNet pretrained weight (IP). All FLOPs are measured with a 640x640 image size on COCO val2017. The FPS is measured with batch size 1 on 3090 GPU from the model inference to the NMS operation.*