Selaa lähdekoodia

debug rtdetr_nano

yjh0410 2 vuotta sitten
vanhempi
sitoutus
e7e2d928c7

+ 5 - 6
models/detectors/rtdetr/rtdetr_decoder.py

@@ -8,8 +8,9 @@ from .rtdetr_basic import get_clones, TRDecoderLayer, MLP
 class TransformerDecoder(nn.Module):
     def __init__(self, cfg, in_dim, return_intermediate=False):
         super().__init__()
+        # -------------------- Basic Parameters ---------------------
         self.d_model = in_dim
-        self.query_dim = 4
+        self.query_dim = 4  # For RefPoint head
         self.scale = 2 * 3.141592653589793
         self.num_queries = cfg['num_queries']
         self.num_deocder_layers = cfg['num_decoder_layers']
@@ -82,13 +83,11 @@ class TransformerDecoder(nn.Module):
         # main process
         output = tgt
         for layer_id, layer in enumerate(self.decoder_layers):
-            # query sine embed
+            # Conditional query
             query_sine_embed = self.query_sine_embed(num_feats, reference_points)
-
-            # conditional query
             query_pos = self.ref_point_head(query_sine_embed) # [B, N, C]
 
-            # decoder
+            # Decoder
             output = layer(
                     # input for decoder
                     tgt = output,
@@ -98,7 +97,7 @@ class TransformerDecoder(nn.Module):
                     memory_pos = memory_pos,
                 )
 
-            # iter update
+            # Iter update
             if self.bbox_embed is not None:
                 delta_unsig = self.bbox_embed[layer_id](output)
                 outputs_unsig = delta_unsig + self.inverse_sigmoid(reference_points)

+ 1 - 1
models/detectors/rtdetr/rtdetr_dethead.py

@@ -56,7 +56,7 @@ class DetectHead(nn.Module):
             # class embed
             outputs_class = torch.stack([
                 layer_cls_embed(layer_hs) for layer_cls_embed, layer_hs in zip(self.class_embed, hs)])
-            # Bbox embed
+            # bbox embed
             outputs_coords = []
             for dec_lid, (layer_ref_sig, layer_bbox_embed, layer_hs) in enumerate(zip(reference[:-1], self.bbox_embed, hs)):
                 layer_delta_unsig = layer_bbox_embed(layer_hs)

+ 1 - 0
test.py

@@ -134,6 +134,7 @@ def test(args,
         t0 = time.time()
         # inference
         bboxes, scores, labels = model(x)
+        print(bboxes, scores, labels)
         print("detection time used ", time.time() - t0, "s")
         
         # rescale bboxes