|
|
@@ -759,7 +759,7 @@ class YoloxTrainer(object):
|
|
|
|
|
|
return images, targets, new_img_size
|
|
|
|
|
|
-## RTCDet Trainer
|
|
|
+## Real-time Convolutional Object Detector Trainer
|
|
|
class RTCTrainer(object):
|
|
|
def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
|
|
|
# ------------------- basic parameters -------------------
|
|
|
@@ -1121,7 +1121,7 @@ class RTCTrainer(object):
|
|
|
args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
self.train_loader.dataset.transform = self.train_transform
|
|
|
|
|
|
-## RTRDet Trainer
|
|
|
+## Real-time Transformer-based Object Detector Trainer
|
|
|
class RTRTrainer(object):
|
|
|
def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
|
|
|
# ------------------- Basic parameters -------------------
|
|
|
@@ -1132,21 +1132,14 @@ class RTRTrainer(object):
|
|
|
self.criterion = criterion
|
|
|
self.world_size = world_size
|
|
|
self.grad_accumulate = args.grad_accumulate
|
|
|
- self.clip_grad = 35
|
|
|
- self.heavy_eval = False
|
|
|
- # weak augmentatino stage
|
|
|
- self.second_stage = False
|
|
|
- self.third_stage = False
|
|
|
- self.second_stage_epoch = args.no_aug_epoch
|
|
|
- self.third_stage_epoch = args.no_aug_epoch // 2
|
|
|
+ self.clip_grad = 0.1
|
|
|
# path to save model
|
|
|
self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
|
|
|
os.makedirs(self.path_to_save, exist_ok=True)
|
|
|
|
|
|
# ---------------------------- Hyperparameters refer to RTMDet ----------------------------
|
|
|
self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 1e-4, 'lr0': 0.0001, 'backbone_lr_ratio': 0.1}
|
|
|
- self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
|
|
|
- self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
|
|
|
+ self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.1}
|
|
|
self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
|
|
|
|
|
|
# ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
|
|
|
@@ -1175,70 +1168,26 @@ class RTRTrainer(object):
|
|
|
self.optimizer, self.start_epoch = build_detr_optimizer(self.optimizer_dict, model, self.args.resume)
|
|
|
|
|
|
# ---------------------------- Build LR Scheduler ----------------------------
|
|
|
- self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
|
|
|
+ self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
|
|
|
self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
|
|
|
if self.args.resume and self.args.resume != 'None':
|
|
|
self.lr_scheduler.step()
|
|
|
|
|
|
- # ---------------------------- Build Model-EMA ----------------------------
|
|
|
- if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
|
|
|
- print('Build ModelEMA ...')
|
|
|
- self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
|
|
|
- else:
|
|
|
- self.model_ema = None
|
|
|
-
|
|
|
-
|
|
|
def train(self, model):
|
|
|
for epoch in range(self.start_epoch, self.args.max_epoch):
|
|
|
if self.args.distributed:
|
|
|
self.train_loader.batch_sampler.sampler.set_epoch(epoch)
|
|
|
|
|
|
- # check second stage
|
|
|
- if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
|
|
|
- self.check_second_stage()
|
|
|
- # save model of the last mosaic epoch
|
|
|
- weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
|
|
|
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
|
|
|
- print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
|
|
|
- torch.save({'model': model.state_dict(),
|
|
|
- 'mAP': round(self.evaluator.map*100, 1),
|
|
|
- 'optimizer': self.optimizer.state_dict(),
|
|
|
- 'epoch': self.epoch,
|
|
|
- 'args': self.args},
|
|
|
- checkpoint_path)
|
|
|
-
|
|
|
- # check third stage
|
|
|
- if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
|
|
|
- self.check_third_stage()
|
|
|
- # save model of the last mosaic epoch
|
|
|
- weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
|
|
|
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
|
|
|
- print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
|
|
|
- torch.save({'model': model.state_dict(),
|
|
|
- 'mAP': round(self.evaluator.map*100, 1),
|
|
|
- 'optimizer': self.optimizer.state_dict(),
|
|
|
- 'epoch': self.epoch,
|
|
|
- 'args': self.args},
|
|
|
- checkpoint_path)
|
|
|
-
|
|
|
# train one epoch
|
|
|
self.epoch = epoch
|
|
|
self.train_one_epoch(model)
|
|
|
|
|
|
# eval one epoch
|
|
|
- if self.heavy_eval:
|
|
|
+ if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
|
|
|
model_eval = model.module if self.args.distributed else model
|
|
|
self.eval(model_eval)
|
|
|
- else:
|
|
|
- model_eval = model.module if self.args.distributed else model
|
|
|
- if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
|
|
|
- self.eval(model_eval)
|
|
|
-
|
|
|
|
|
|
def eval(self, model):
|
|
|
- # chech model
|
|
|
- model_eval = model if self.model_ema is None else self.model_ema.ema
|
|
|
-
|
|
|
if distributed_utils.is_main_process():
|
|
|
# check evaluator
|
|
|
if self.evaluator is None:
|
|
|
@@ -1246,7 +1195,7 @@ class RTRTrainer(object):
|
|
|
print('Saving state, epoch: {}'.format(self.epoch))
|
|
|
weight_name = '{}_no_eval.pth'.format(self.args.model)
|
|
|
checkpoint_path = os.path.join(self.path_to_save, weight_name)
|
|
|
- torch.save({'model': model_eval.state_dict(),
|
|
|
+ torch.save({'model': model.state_dict(),
|
|
|
'mAP': -1.,
|
|
|
'optimizer': self.optimizer.state_dict(),
|
|
|
'epoch': self.epoch,
|
|
|
@@ -1255,12 +1204,12 @@ class RTRTrainer(object):
|
|
|
else:
|
|
|
print('eval ...')
|
|
|
# set eval mode
|
|
|
- model_eval.trainable = False
|
|
|
- model_eval.eval()
|
|
|
+ model.trainable = False
|
|
|
+ model.eval()
|
|
|
|
|
|
# evaluate
|
|
|
with torch.no_grad():
|
|
|
- self.evaluator.evaluate(model_eval)
|
|
|
+ self.evaluator.evaluate(model)
|
|
|
|
|
|
# save model
|
|
|
cur_map = self.evaluator.map
|
|
|
@@ -1271,7 +1220,7 @@ class RTRTrainer(object):
|
|
|
print('Saving state, epoch:', self.epoch)
|
|
|
weight_name = '{}_best.pth'.format(self.args.model)
|
|
|
checkpoint_path = os.path.join(self.path_to_save, weight_name)
|
|
|
- torch.save({'model': model_eval.state_dict(),
|
|
|
+ torch.save({'model': model.state_dict(),
|
|
|
'mAP': round(self.best_map*100, 1),
|
|
|
'optimizer': self.optimizer.state_dict(),
|
|
|
'epoch': self.epoch,
|
|
|
@@ -1279,14 +1228,13 @@ class RTRTrainer(object):
|
|
|
checkpoint_path)
|
|
|
|
|
|
# set train mode.
|
|
|
- model_eval.trainable = True
|
|
|
- model_eval.train()
|
|
|
+ model.trainable = True
|
|
|
+ model.train()
|
|
|
|
|
|
if self.args.distributed:
|
|
|
# wait for all processes to synchronize
|
|
|
dist.barrier()
|
|
|
|
|
|
-
|
|
|
def train_one_epoch(self, model):
|
|
|
# basic parameters
|
|
|
epoch_size = len(self.train_loader)
|
|
|
@@ -1383,7 +1331,6 @@ class RTRTrainer(object):
|
|
|
if not self.second_stage:
|
|
|
self.lr_scheduler.step()
|
|
|
|
|
|
-
|
|
|
def refine_targets(self, targets, min_box_size):
|
|
|
# rescale targets
|
|
|
for tgt in targets:
|
|
|
@@ -1399,7 +1346,6 @@ class RTRTrainer(object):
|
|
|
|
|
|
return targets
|
|
|
|
|
|
-
|
|
|
def normalize_bbox(self, targets, img_size):
|
|
|
# normalize targets
|
|
|
for tgt in targets:
|
|
|
@@ -1407,7 +1353,6 @@ class RTRTrainer(object):
|
|
|
|
|
|
return targets
|
|
|
|
|
|
-
|
|
|
def denormalize_bbox(self, targets, img_size):
|
|
|
# normalize targets
|
|
|
for tgt in targets:
|
|
|
@@ -1415,7 +1360,6 @@ class RTRTrainer(object):
|
|
|
|
|
|
return targets
|
|
|
|
|
|
-
|
|
|
def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
|
|
|
"""
|
|
|
Deployed for Multi scale trick.
|
|
|
@@ -1455,61 +1399,6 @@ class RTRTrainer(object):
|
|
|
return images, targets, new_img_size
|
|
|
|
|
|
|
|
|
- def check_second_stage(self):
|
|
|
- # set second stage
|
|
|
- print('============== Second stage of Training ==============')
|
|
|
- self.second_stage = True
|
|
|
-
|
|
|
- # close mosaic augmentation
|
|
|
- if self.train_loader.dataset.mosaic_prob > 0.:
|
|
|
- print(' - Close < Mosaic Augmentation > ...')
|
|
|
- self.train_loader.dataset.mosaic_prob = 0.
|
|
|
- self.heavy_eval = True
|
|
|
-
|
|
|
- # close mixup augmentation
|
|
|
- if self.train_loader.dataset.mixup_prob > 0.:
|
|
|
- print(' - Close < Mixup Augmentation > ...')
|
|
|
- self.train_loader.dataset.mixup_prob = 0.
|
|
|
- self.heavy_eval = True
|
|
|
-
|
|
|
- # close rotation augmentation
|
|
|
- if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
|
|
|
- print(' - Close < degress of rotation > ...')
|
|
|
- self.trans_cfg['degrees'] = 0.0
|
|
|
- if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
|
|
|
- print(' - Close < shear of rotation >...')
|
|
|
- self.trans_cfg['shear'] = 0.0
|
|
|
- if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
|
|
|
- print(' - Close < perspective of rotation > ...')
|
|
|
- self.trans_cfg['perspective'] = 0.0
|
|
|
-
|
|
|
- # build a new transform for second stage
|
|
|
- print(' - Rebuild transforms ...')
|
|
|
- self.train_transform, self.trans_cfg = build_transform(
|
|
|
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
- self.train_loader.dataset.transform = self.train_transform
|
|
|
-
|
|
|
-
|
|
|
- def check_third_stage(self):
|
|
|
- # set third stage
|
|
|
- print('============== Third stage of Training ==============')
|
|
|
- self.third_stage = True
|
|
|
-
|
|
|
- # close random affine
|
|
|
- if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
|
|
|
- print(' - Close < translate of affine > ...')
|
|
|
- self.trans_cfg['translate'] = 0.0
|
|
|
- if 'scale' in self.trans_cfg.keys():
|
|
|
- print(' - Close < scale of affine >...')
|
|
|
- self.trans_cfg['scale'] = [1.0, 1.0]
|
|
|
-
|
|
|
- # build a new transform for second stage
|
|
|
- print(' - Rebuild transforms ...')
|
|
|
- self.train_transform, self.trans_cfg = build_transform(
|
|
|
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
- self.train_loader.dataset.transform = self.train_transform
|
|
|
-
|
|
|
-
|
|
|
# ----------------------- Det + Seg trainers -----------------------
|
|
|
## RTCDet Trainer for Det + Seg
|
|
|
class RTCTrainerDS(object):
|
|
|
@@ -2206,7 +2095,7 @@ def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion
|
|
|
return YoloxTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
|
|
|
elif model_cfg['trainer_type'] == 'rtcdet':
|
|
|
return RTCTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
|
|
|
- elif model_cfg['trainer_type'] == 'rtrdet':
|
|
|
+ elif model_cfg['trainer_type'] == 'rtdetr':
|
|
|
return RTRTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
|
|
|
|
|
|
# ----------------------- Det + Seg trainers -----------------------
|