|
|
@@ -39,9 +39,7 @@ class YoloTrainer(object):
|
|
|
self.heavy_eval = False
|
|
|
# weak augmentatino stage
|
|
|
self.second_stage = False
|
|
|
- self.third_stage = False
|
|
|
self.second_stage_epoch = args.no_aug_epoch
|
|
|
- self.third_stage_epoch = args.no_aug_epoch // 2
|
|
|
# path to save model
|
|
|
self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
|
|
|
os.makedirs(self.path_to_save, exist_ok=True)
|
|
|
@@ -109,20 +107,6 @@ class YoloTrainer(object):
|
|
|
'args': self.args},
|
|
|
checkpoint_path)
|
|
|
|
|
|
- # check third stage
|
|
|
- if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
|
|
|
- self.check_third_stage()
|
|
|
- # save model of the last mosaic epoch
|
|
|
- weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
|
|
|
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
|
|
|
- print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
|
|
|
- torch.save({'model': model.state_dict(),
|
|
|
- 'mAP': round(self.evaluator.map*100, 1),
|
|
|
- 'optimizer': self.optimizer.state_dict(),
|
|
|
- 'epoch': self.epoch,
|
|
|
- 'args': self.args},
|
|
|
- checkpoint_path)
|
|
|
-
|
|
|
# train one epoch
|
|
|
self.epoch = epoch
|
|
|
self.train_one_epoch(model)
|
|
|
@@ -274,8 +258,7 @@ class YoloTrainer(object):
|
|
|
break
|
|
|
|
|
|
# LR Schedule
|
|
|
- if not self.second_stage:
|
|
|
- self.lr_scheduler.step()
|
|
|
+ self.lr_scheduler.step()
|
|
|
|
|
|
# Gather the stats from all processes
|
|
|
metric_logger.synchronize_between_processes()
|
|
|
@@ -312,7 +295,6 @@ class YoloTrainer(object):
|
|
|
|
|
|
# Choose a new image size
|
|
|
new_img_size = random.randrange(min_img_size, max_img_size + max_stride, max_stride)
|
|
|
- new_img_size = new_img_size // max_stride * max_stride # size
|
|
|
|
|
|
if new_img_size / old_img_size != 1:
|
|
|
# interpolate
|
|
|
@@ -373,25 +355,6 @@ class YoloTrainer(object):
|
|
|
args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
self.train_loader.dataset.transform = self.train_transform
|
|
|
|
|
|
- def check_third_stage(self):
|
|
|
- # set third stage
|
|
|
- print('============== Third stage of Training ==============')
|
|
|
- self.third_stage = True
|
|
|
-
|
|
|
- # close random affine
|
|
|
- if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
|
|
|
- print(' - Close < translate of affine > ...')
|
|
|
- self.trans_cfg['translate'] = 0.0
|
|
|
- if 'scale' in self.trans_cfg.keys():
|
|
|
- print(' - Close < scale of affine >...')
|
|
|
- self.trans_cfg['scale'] = [1.0, 1.0]
|
|
|
-
|
|
|
- # build a new transform for second stage
|
|
|
- print(' - Rebuild transforms ...')
|
|
|
- self.train_transform, self.trans_cfg = build_transform(
|
|
|
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
- self.train_loader.dataset.transform = self.train_transform
|
|
|
-
|
|
|
## Customed Trainer for YOLOX series
|
|
|
class YoloxTrainer(object):
|
|
|
def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
|