|
|
@@ -22,7 +22,7 @@ from utils.solver.lr_scheduler import build_lr_scheduler
|
|
|
from dataset.build import build_dataset, build_transform
|
|
|
|
|
|
|
|
|
-# Trainer for YOLO
|
|
|
+# Trainer refered to YOLOv8
|
|
|
class YoloTrainer(object):
|
|
|
def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion):
|
|
|
# ------------------- basic parameters -------------------
|
|
|
@@ -321,6 +321,294 @@ class YoloTrainer(object):
|
|
|
return images, targets, new_img_size
|
|
|
|
|
|
|
|
|
+# Trainer refered to RTMDet
|
|
|
+class RTMTrainer(object):
|
|
|
+ def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion):
|
|
|
+ # ------------------- basic parameters -------------------
|
|
|
+ self.args = args
|
|
|
+ self.epoch = 0
|
|
|
+ self.best_map = -1.
|
|
|
+ self.device = device
|
|
|
+ self.criterion = criterion
|
|
|
+ self.heavy_eval = False
|
|
|
+
|
|
|
+ # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
|
|
|
+ self.data_cfg = data_cfg
|
|
|
+ self.model_cfg = model_cfg
|
|
|
+ self.trans_cfg = trans_cfg
|
|
|
+
|
|
|
+ # ---------------------------- Build Transform ----------------------------
|
|
|
+ self.train_transform, self.trans_cfg = build_transform(
|
|
|
+ args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
+ self.val_transform, _ = build_transform(
|
|
|
+ args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
|
|
|
+
|
|
|
+ # ---------------------------- Build Dataset & Dataloader ----------------------------
|
|
|
+ self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
|
|
|
+ world_size = distributed_utils.get_world_size()
|
|
|
+ self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // world_size, CollateFunc())
|
|
|
+
|
|
|
+ # ---------------------------- Build Evaluator ----------------------------
|
|
|
+ self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
|
|
|
+
|
|
|
+ # ---------------------------- Build Grad. Scaler ----------------------------
|
|
|
+ self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
|
|
|
+
|
|
|
+ # ---------------------------- Build Optimizer ----------------------------
|
|
|
+ self.model_cfg['lr0'] *= self.args.batch_size / 64
|
|
|
+ self.optimizer, self.start_epoch = build_yolo_optimizer(self.model_cfg, model, self.args.resume)
|
|
|
+
|
|
|
+ # ---------------------------- Build LR Scheduler ----------------------------
|
|
|
+ self.args.max_epoch += self.args.wp_epoch
|
|
|
+ self.lr_scheduler, self.lf = build_lr_scheduler(self.model_cfg, self.optimizer, self.args.max_epoch)
|
|
|
+ self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
|
|
|
+ if self.args.resume:
|
|
|
+ self.lr_scheduler.step()
|
|
|
+
|
|
|
+ # ---------------------------- Build Model-EMA ----------------------------
|
|
|
+ if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
|
|
|
+ print('Build ModelEMA ...')
|
|
|
+ self.model_ema = ModelEMA(
|
|
|
+ model,
|
|
|
+ self.model_cfg['ema_decay'],
|
|
|
+ self.model_cfg['ema_tau'],
|
|
|
+ self.start_epoch * len(self.train_loader))
|
|
|
+ else:
|
|
|
+ self.model_ema = None
|
|
|
+
|
|
|
+
|
|
|
+ def train(self, model):
|
|
|
+ for epoch in range(self.start_epoch, self.args.max_epoch):
|
|
|
+ if self.args.distributed:
|
|
|
+ self.train_loader.batch_sampler.sampler.set_epoch(epoch)
|
|
|
+
|
|
|
+ # check second stage
|
|
|
+ if epoch >= (self.args.max_epoch - self.model_cfg['no_aug_epoch'] - 1):
|
|
|
+ # close mosaic augmentation
|
|
|
+ if self.train_loader.dataset.mosaic_prob > 0.:
|
|
|
+ print('close Mosaic Augmentation ...')
|
|
|
+ self.train_loader.dataset.mosaic_prob = 0.
|
|
|
+ self.heavy_eval = True
|
|
|
+ # close mixup augmentation
|
|
|
+ if self.train_loader.dataset.mixup_prob > 0.:
|
|
|
+ print('close Mixup Augmentation ...')
|
|
|
+ self.train_loader.dataset.mixup_prob = 0.
|
|
|
+ self.heavy_eval = True
|
|
|
+
|
|
|
+ # train one epoch
|
|
|
+ self.train_one_epoch(model)
|
|
|
+
|
|
|
+ # eval one epoch
|
|
|
+ if self.heavy_eval:
|
|
|
+ model_eval = model.module if self.args.distributed else model
|
|
|
+ self.eval(model_eval)
|
|
|
+ else:
|
|
|
+ model_eval = model.module if self.args.distributed else model
|
|
|
+ if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
|
|
|
+ self.eval(model_eval)
|
|
|
+
|
|
|
+
|
|
|
+ def eval(self, model):
|
|
|
+ # chech model
|
|
|
+ model_eval = model if self.model_ema is None else self.model_ema.ema
|
|
|
+
|
|
|
+ # path to save model
|
|
|
+ path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
|
|
|
+ os.makedirs(path_to_save, exist_ok=True)
|
|
|
+
|
|
|
+ if distributed_utils.is_main_process():
|
|
|
+ # check evaluator
|
|
|
+ if self.evaluator is None:
|
|
|
+ print('No evaluator ... save model and go on training.')
|
|
|
+ print('Saving state, epoch: {}'.format(self.epoch + 1))
|
|
|
+ weight_name = '{}_no_eval.pth'.format(self.args.model)
|
|
|
+ checkpoint_path = os.path.join(path_to_save, weight_name)
|
|
|
+ torch.save({'model': model_eval.state_dict(),
|
|
|
+ 'mAP': -1.,
|
|
|
+ 'optimizer': self.optimizer.state_dict(),
|
|
|
+ 'epoch': self.epoch,
|
|
|
+ 'args': self.args},
|
|
|
+ checkpoint_path)
|
|
|
+ else:
|
|
|
+ print('eval ...')
|
|
|
+ # set eval mode
|
|
|
+ model_eval.trainable = False
|
|
|
+ model_eval.eval()
|
|
|
+
|
|
|
+ # evaluate
|
|
|
+ with torch.no_grad():
|
|
|
+ self.evaluator.evaluate(model_eval)
|
|
|
+
|
|
|
+ # save model
|
|
|
+ cur_map = self.evaluator.map
|
|
|
+ if cur_map > self.best_map:
|
|
|
+ # update best-map
|
|
|
+ self.best_map = cur_map
|
|
|
+ # save model
|
|
|
+ print('Saving state, epoch:', self.epoch + 1)
|
|
|
+ weight_name = '{}_best.pth'.format(self.args.model)
|
|
|
+ checkpoint_path = os.path.join(path_to_save, weight_name)
|
|
|
+ torch.save({'model': model_eval.state_dict(),
|
|
|
+ 'mAP': round(self.best_map*100, 1),
|
|
|
+ 'optimizer': self.optimizer.state_dict(),
|
|
|
+ 'epoch': self.epoch,
|
|
|
+ 'args': self.args},
|
|
|
+ checkpoint_path)
|
|
|
+
|
|
|
+ # set train mode.
|
|
|
+ model_eval.trainable = True
|
|
|
+ model_eval.train()
|
|
|
+
|
|
|
+ if self.args.distributed:
|
|
|
+ # wait for all processes to synchronize
|
|
|
+ dist.barrier()
|
|
|
+
|
|
|
+
|
|
|
+ def train_one_epoch(self, model):
|
|
|
+ # basic parameters
|
|
|
+ epoch_size = len(self.train_loader)
|
|
|
+ img_size = self.args.img_size
|
|
|
+ t0 = time.time()
|
|
|
+ nw = epoch_size * self.args.wp_epoch
|
|
|
+
|
|
|
+ # Train one epoch
|
|
|
+ for iter_i, (images, targets) in enumerate(self.train_loader):
|
|
|
+ ni = iter_i + self.epoch * epoch_size
|
|
|
+ # Warmup
|
|
|
+ if ni <= nw:
|
|
|
+ xi = [0, nw] # x interp
|
|
|
+ for j, x in enumerate(self.optimizer.param_groups):
|
|
|
+ # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
|
|
+ x['lr'] = np.interp(
|
|
|
+ ni, xi, [self.model_cfg['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
|
|
|
+ if 'momentum' in x:
|
|
|
+ x['momentum'] = np.interp(ni, xi, [self.model_cfg['warmup_momentum'], self.model_cfg['momentum']])
|
|
|
+
|
|
|
+ # To device
|
|
|
+ images = images.to(self.device, non_blocking=True).float() / 255.
|
|
|
+
|
|
|
+ # Multi scale
|
|
|
+ if self.args.multi_scale:
|
|
|
+ images, targets, img_size = self.rescale_image_targets(
|
|
|
+ images, targets, model.stride, self.args.min_box_size, self.model_cfg['multi_scale'])
|
|
|
+ else:
|
|
|
+ targets = self.refine_targets(targets, self.args.min_box_size)
|
|
|
+
|
|
|
+ # Visualize train targets
|
|
|
+ if self.args.vis_tgt:
|
|
|
+ vis_data(images*255, targets)
|
|
|
+
|
|
|
+ # Inference
|
|
|
+ with torch.cuda.amp.autocast(enabled=self.args.fp16):
|
|
|
+ outputs = model(images)
|
|
|
+ # Compute loss
|
|
|
+ loss_dict = self.criterion(outputs=outputs, targets=targets)
|
|
|
+ losses = loss_dict['losses']
|
|
|
+
|
|
|
+ loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
|
|
|
+
|
|
|
+ # Backward
|
|
|
+ self.scaler.scale(losses).backward()
|
|
|
+
|
|
|
+ # Optimize
|
|
|
+ if self.model_cfg['clip_grad'] > 0:
|
|
|
+ # unscale gradients
|
|
|
+ self.scaler.unscale_(self.optimizer)
|
|
|
+ # clip gradients
|
|
|
+ torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.model_cfg['clip_grad'])
|
|
|
+ # optimizer.step
|
|
|
+ self.scaler.step(self.optimizer)
|
|
|
+ self.scaler.update()
|
|
|
+ self.optimizer.zero_grad()
|
|
|
+ # ema
|
|
|
+ if self.model_ema is not None:
|
|
|
+ self.model_ema.update(model)
|
|
|
+
|
|
|
+ # Logs
|
|
|
+ if distributed_utils.is_main_process() and iter_i % 10 == 0:
|
|
|
+ t1 = time.time()
|
|
|
+ cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
|
|
|
+ # basic infor
|
|
|
+ log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
|
|
|
+ log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
|
|
|
+ log += '[lr: {:.6f}]'.format(cur_lr[2])
|
|
|
+ # loss infor
|
|
|
+ for k in loss_dict_reduced.keys():
|
|
|
+ if k == 'losses' and self.args.distributed:
|
|
|
+ world_size = distributed_utils.get_world_size()
|
|
|
+ log += '[{}: {:.2f}]'.format(k, loss_dict[k] / world_size)
|
|
|
+ else:
|
|
|
+ log += '[{}: {:.2f}]'.format(k, loss_dict[k])
|
|
|
+
|
|
|
+ # other infor
|
|
|
+ log += '[time: {:.2f}]'.format(t1 - t0)
|
|
|
+ log += '[size: {}]'.format(img_size)
|
|
|
+
|
|
|
+ # print log infor
|
|
|
+ print(log, flush=True)
|
|
|
+
|
|
|
+ t0 = time.time()
|
|
|
+
|
|
|
+ # LR Schedule
|
|
|
+ self.lr_scheduler.step()
|
|
|
+ self.epoch += 1
|
|
|
+
|
|
|
+
|
|
|
+ def refine_targets(self, targets, min_box_size):
|
|
|
+ # rescale targets
|
|
|
+ for tgt in targets:
|
|
|
+ boxes = tgt["boxes"].clone()
|
|
|
+ labels = tgt["labels"].clone()
|
|
|
+ # refine tgt
|
|
|
+ tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
|
|
|
+ min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
|
|
|
+ keep = (min_tgt_size >= min_box_size)
|
|
|
+
|
|
|
+ tgt["boxes"] = boxes[keep]
|
|
|
+ tgt["labels"] = labels[keep]
|
|
|
+
|
|
|
+ return targets
|
|
|
+
|
|
|
+
|
|
|
+ def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
|
|
|
+ """
|
|
|
+ Deployed for Multi scale trick.
|
|
|
+ """
|
|
|
+ if isinstance(stride, int):
|
|
|
+ max_stride = stride
|
|
|
+ elif isinstance(stride, list):
|
|
|
+ max_stride = max(stride)
|
|
|
+
|
|
|
+ # During training phase, the shape of input image is square.
|
|
|
+ old_img_size = images.shape[-1]
|
|
|
+ new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
|
|
|
+ new_img_size = new_img_size // max_stride * max_stride # size
|
|
|
+ if new_img_size / old_img_size != 1:
|
|
|
+ # interpolate
|
|
|
+ images = torch.nn.functional.interpolate(
|
|
|
+ input=images,
|
|
|
+ size=new_img_size,
|
|
|
+ mode='bilinear',
|
|
|
+ align_corners=False)
|
|
|
+ # rescale targets
|
|
|
+ for tgt in targets:
|
|
|
+ boxes = tgt["boxes"].clone()
|
|
|
+ labels = tgt["labels"].clone()
|
|
|
+ boxes = torch.clamp(boxes, 0, old_img_size)
|
|
|
+ # rescale box
|
|
|
+ boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
|
|
|
+ boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
|
|
|
+ # refine tgt
|
|
|
+ tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
|
|
|
+ min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
|
|
|
+ keep = (min_tgt_size >= min_box_size)
|
|
|
+
|
|
|
+ tgt["boxes"] = boxes[keep]
|
|
|
+ tgt["labels"] = labels[keep]
|
|
|
+
|
|
|
+ return images, targets, new_img_size
|
|
|
+
|
|
|
+
|
|
|
# Trainer for DETR
|
|
|
class DetrTrainer(object):
|
|
|
def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion):
|
|
|
@@ -629,6 +917,8 @@ class DetrTrainer(object):
|
|
|
def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion):
|
|
|
if model_cfg['trainer_type'] == 'yolo':
|
|
|
return YoloTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion)
|
|
|
+ elif model_cfg['trainer_type'] == 'rtmdet':
|
|
|
+ return RTMTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion)
|
|
|
elif model_cfg['trainer_type'] == 'detr':
|
|
|
return DetrTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion)
|
|
|
else:
|