|
|
@@ -105,7 +105,7 @@ python train.py --cuda -d coco --root path/to/COCO -v yolov1 -bs 16 --max_epoch
|
|
|
| YOLOv3 | DarkNet-53 | 640 | √ | 250 | 42.9 | 63.5 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov3_coco.pth) |
|
|
|
| YOLOv4 | CSPDarkNet-53 | 640 | √ | 250 | | | |
|
|
|
| YOLOv5 | CSPDarkNet-L | 640 | √ | 250 | | | |
|
|
|
-| YOLOX | CSPDarkNet-L | 640 | √ | 250 | | | |
|
|
|
+| YOLOX | CSPDarkNet-L | 640 | √ | 300 | | | |
|
|
|
| YOLOv7 | ELANNet-Large | 640 | √ | 300 | | | |
|
|
|
|
|
|
*All models are trained with ImageNet pretrained weight (IP). All FLOPs are measured with a 640x640 image size on COCO val2017. The FPS is measured with batch size 1 on 3090 GPU from the model inference to the NMS operation.*
|