|
|
@@ -4,7 +4,7 @@
|
|
|
|-------------|---------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|
|
|
|
| YOLOv7-Tiny | ELANNet-Tiny | 8xb16 | 640 | 39.5 | 58.5 | 22.6 | 7.9 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov7_tiny_coco.pth) |
|
|
|
| YOLOv7 | ELANNet-Large | 1xb16 | 640 | 48.0 | 67.5 | 144.6 | 44.0 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov7_large_coco.pth) |
|
|
|
-| YOLOv7-X | ELANNet-Huge | 8xb8 | 640 | | | | | |
|
|
|
+| YOLOv7-X | ELANNet-Huge | | 640 | | | | | |
|
|
|
|
|
|
- For training, we train YOLOv7 and YOLOv7-Tiny with 300 epochs on COCO.
|
|
|
- For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation, following the setting of [YOLOv5](https://github.com/ultralytics/yolov5).
|