|
@@ -95,9 +95,9 @@ python train.py --cuda -d coco --root path/to/COCO -v yolov1 -bs 16 --max_epoch
|
|
|
|--------|-------|------|-------|------------------------|-------------------------|--------|
|
|
|--------|-------|------|-------|------------------------|-------------------------|--------|
|
|
|
| YOLOv1 | 640 | √ | 150 | | | |
|
|
| YOLOv1 | 640 | √ | 150 | | | |
|
|
|
| YOLOv2 | 640 | √ | 150 | | | |
|
|
| YOLOv2 | 640 | √ | 150 | | | |
|
|
|
-| YOLOv3 | 640 | √ | 300 | | | |
|
|
|
|
|
-| YOLOv4 | 640 | √ | 300 | | | |
|
|
|
|
|
-| YOLOX | 640 | √ | 300 | | | |
|
|
|
|
|
|
|
+| YOLOv3 | 640 | √ | 250 | | | |
|
|
|
|
|
+| YOLOv4 | 640 | √ | 250 | | | |
|
|
|
|
|
+| YOLOX | 640 | √ | 250 | | | |
|
|
|
|
|
|
|
|
*All models are trained with ImageNet pretrained weight (IP). All FLOPs are measured with a 640x640 image size on COCO val2017. The FPS is measured with batch size 1 on 3090 GPU from the model inference to the NMS operation.*
|
|
*All models are trained with ImageNet pretrained weight (IP). All FLOPs are measured with a 640x640 image size on COCO val2017. The FPS is measured with batch size 1 on 3090 GPU from the model inference to the NMS operation.*
|
|
|
|
|
|