|
|
@@ -37,69 +37,69 @@ At least, please make sure your torch is version 1.x.
|
|
|
|
|
|
|
|
|
## Experiments
|
|
|
-### COCO
|
|
|
-- Download COCO.
|
|
|
+### VOC
|
|
|
+- Download VOC.
|
|
|
```Shell
|
|
|
cd <PyTorch_YOLO_Tutorial>
|
|
|
cd dataset/scripts/
|
|
|
-sh COCO2017.sh
|
|
|
+sh VOC2007.sh
|
|
|
+sh VOC2012.sh
|
|
|
```
|
|
|
|
|
|
-- Check COCO
|
|
|
+- Check VOC
|
|
|
```Shell
|
|
|
cd <PyTorch_YOLO_Tutorial>
|
|
|
-python dataset/coco.py
|
|
|
+python dataset/voc.py
|
|
|
```
|
|
|
|
|
|
-- Train on COCO
|
|
|
+- Train on VOC
|
|
|
|
|
|
For example:
|
|
|
```Shell
|
|
|
-python train.py --cuda -d coco --root path/to/COCO -v yolov1 -bs 16 --max_epoch 150 --wp_epoch 1 --eval_epoch 10 --fp16 --ema --multi_scale
|
|
|
+python train.py --cuda -d voc --root path/to/VOCdevkit -v yolov1 -bs 16 --max_epoch 150 --wp_epoch 1 --eval_epoch 10 --fp16 --ema --multi_scale
|
|
|
```
|
|
|
|
|
|
-| Model | Scale | IP | Epoch | AP<sup>val<br>0.5:0.95 | AP<sup>test<br>0.5:0.95 | FPS<sup>3090<br>FP32-bs1 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
-|--------|-------|------|-------|------------------------|-------------------------|--------------------------|-------------------|--------------------|--------|
|
|
|
-| YOLOv1 | 640 | √ | 150 | 35.5 | | 100 | 9.0 | 2.3 | |
|
|
|
-| YOLOv2 | 640 | √ | 150 | | | | 33.5 | 8.3 | |
|
|
|
-| YOLOv3 | 640 | √ | 150 | | | | 86.7 | 23.0 | |
|
|
|
-| YOLOv4 | 640 | √ | 150 | | | | 175.4 | 46.5 | |
|
|
|
-
|
|
|
-*All models are trained with ImageNet pretrained weight (IP). All FLOPs are measured with a 640x640 image size on COCO val2017. The FPS is measured with batch size 1 on 3090 GPU from the model inference to the NMS operation.*
|
|
|
+| Model | Scale | IP | Epoch | mAP | FPS<sup>3090<br>FP32-bs1 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
+|--------|-------|------|-------|------|--------------------------|-------------------|--------------------|--------|
|
|
|
+| YOLOv1 | 640 | √ | 150 | 76.7 | | 37.8 | 21.3 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpy/yolov1_voc.pth) |
|
|
|
+| YOLOv2 | 640 | √ | 150 | | | 53.9 | 30.9 | |
|
|
|
+| YOLOv3 | 640 | √ | 150 | | | 167.4 | 54.9 | |
|
|
|
+| YOLOv4 | 640 | √ | 150 | | | | | |
|
|
|
+| YOLOX | 640 | × | 300 | | | | | |
|
|
|
|
|
|
+*All models are trained with ImageNet pretrained weight (IP). All FLOPs are measured with a 640x640 image size on VOC2007 test. The FPS is measured with batch size 1 on 3090 GPU from the model inference to the NMS operation.*
|
|
|
|
|
|
|
|
|
-### VOC
|
|
|
-- Download VOC.
|
|
|
+### COCO
|
|
|
+- Download COCO.
|
|
|
```Shell
|
|
|
cd <PyTorch_YOLO_Tutorial>
|
|
|
cd dataset/scripts/
|
|
|
-sh VOC2007.sh
|
|
|
-sh VOC2012.sh
|
|
|
+sh COCO2017.sh
|
|
|
```
|
|
|
|
|
|
-- Check VOC
|
|
|
+- Check COCO
|
|
|
```Shell
|
|
|
cd <PyTorch_YOLO_Tutorial>
|
|
|
-python dataset/voc.py
|
|
|
+python dataset/coco.py
|
|
|
```
|
|
|
|
|
|
-- Train on VOC
|
|
|
+- Train on COCO
|
|
|
|
|
|
For example:
|
|
|
```Shell
|
|
|
-python train.py --cuda -d voc --root path/to/VOCdevkit -v yolov1 -bs 16 --max_epoch 150 --wp_epoch 1 --eval_epoch 10 --fp16 --ema --multi_scale
|
|
|
+python train.py --cuda -d coco --root path/to/COCO -v yolov1 -bs 16 --max_epoch 150 --wp_epoch 1 --eval_epoch 10 --fp16 --ema --multi_scale
|
|
|
```
|
|
|
|
|
|
-| Model | Scale | IP | mAP | FPS<sup>3090<br>FP32-bs1 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
-|--------|-------|------|------|--------------------------|-------------------|--------------------|--------|
|
|
|
-| YOLOv1 | 640 | √ | 76.7 | | 37.8 | 21.3 | |
|
|
|
-| YOLOv2 | 640 | √ | | | 53.9 | 30.9 | |
|
|
|
-| YOLOv3 | 640 | √ | | | 167.4 | 54.9 | |
|
|
|
-| YOLOv4 | 640 | √ | | | | | |
|
|
|
-| YOLOX | 640 | × | | | | | |
|
|
|
+| Model | Scale | IP | Epoch | AP<sup>val<br>0.5:0.95 | AP<sup>test<br>0.5:0.95 | Weight |
|
|
|
+|--------|-------|------|-------|------------------------|-------------------------|--------|
|
|
|
+| YOLOv1 | 640 | √ | 150 | | | |
|
|
|
+| YOLOv2 | 640 | √ | 150 | | | |
|
|
|
+| YOLOv3 | 640 | √ | 300 | | | |
|
|
|
+| YOLOv4 | 640 | √ | 300 | | | |
|
|
|
+| YOLOX | 640 | × | 300 | | | |
|
|
|
|
|
|
-*All models are trained with ImageNet pretrained weight (IP). All FLOPs are measured with a 640x640 image size on VOC2007 test. The FPS is measured with batch size 1 on 3090 GPU from the model inference to the NMS operation.*
|
|
|
+*All models are trained with ImageNet pretrained weight (IP). All FLOPs are measured with a 640x640 image size on COCO val2017. The FPS is measured with batch size 1 on 3090 GPU from the model inference to the NMS operation.*
|
|
|
|
|
|
|
|
|
## Train
|