|
@@ -64,7 +64,7 @@ python train.py --cuda -d voc --root path/to/VOCdevkit -v yolov1 -bs 16 --max_ep
|
|
|
| YOLOv1 | 640 | √ | 150 | 76.7 | | 37.8 | 21.3 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpy/yolov1_voc.pth) |
|
|
| YOLOv1 | 640 | √ | 150 | 76.7 | | 37.8 | 21.3 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpy/yolov1_voc.pth) |
|
|
|
| YOLOv2 | 640 | √ | 150 | 79.8 | | 53.9 | 30.9 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpy/yolov2_voc.pth) |
|
|
| YOLOv2 | 640 | √ | 150 | 79.8 | | 53.9 | 30.9 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpy/yolov2_voc.pth) |
|
|
|
| YOLOv3 | 640 | √ | 150 | 82.0 | | 167.4 | 54.9 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpy/yolov3_voc.pth) |
|
|
| YOLOv3 | 640 | √ | 150 | 82.0 | | 167.4 | 54.9 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpy/yolov3_voc.pth) |
|
|
|
-| YOLOv4 | 640 | √ | 150 | | | | | |
|
|
|
|
|
|
|
+| YOLOv4 | 640 | √ | 150 | 83.6 | | 162.7 | 61.5 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpy/yolov4_voc.pth) |
|
|
|
| YOLOX | 640 | √ | 150 | | | | | |
|
|
| YOLOX | 640 | √ | 150 | | | | | |
|
|
|
|
|
|
|
|
*All models are trained with ImageNet pretrained weight (IP). All FLOPs are measured with a 640x640 image size on VOC2007 test. The FPS is measured with batch size 1 on 3090 GPU from the model inference to the NMS operation.*
|
|
*All models are trained with ImageNet pretrained weight (IP). All FLOPs are measured with a 640x640 image size on VOC2007 test. The FPS is measured with batch size 1 on 3090 GPU from the model inference to the NMS operation.*
|