浏览代码

optimize codes

yjh0410 1 年之前
父节点
当前提交
a0d28c1570
共有 1 个文件被更改,包括 198 次插入198 次删除
  1. 198 198
      engine.py

+ 198 - 198
engine.py

@@ -24,8 +24,8 @@ from dataset.build import build_dataset, build_transform
 
 
 # ----------------------- Det trainers -----------------------
-## YOLOX Trainer
-class YoloxTrainer(object):
+## Trainer for general YOLO series
+class YoloTrainer(object):
     def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
         # ------------------- basic parameters -------------------
         self.args = args
@@ -35,7 +35,7 @@ class YoloxTrainer(object):
         self.criterion = criterion
         self.world_size = world_size
         self.grad_accumulate = args.grad_accumulate
-        self.no_aug_epoch = args.no_aug_epoch
+        self.clip_grad = 35
         self.heavy_eval = False
         # weak augmentatino stage
         self.second_stage = False
@@ -46,39 +46,39 @@ class YoloxTrainer(object):
         self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
         os.makedirs(self.path_to_save, exist_ok=True)
 
-        # ---------------------------- Hyperparameters refer to YOLOX ----------------------------
-        self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.9, 'weight_decay': 5e-4, 'lr0': 0.01}
-        self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
-        self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
+        # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
+        self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
+        self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
+        self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
         self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}        
 
         # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
-        self.data_cfg = data_cfg
+        self.data_cfg  = data_cfg
         self.model_cfg = model_cfg
         self.trans_cfg = trans_cfg
 
         # ---------------------------- Build Transform ----------------------------
         self.train_transform, self.trans_cfg = build_transform(
-            args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
+            args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
         self.val_transform, _ = build_transform(
-            args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
+            args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
 
         # ---------------------------- Build Dataset & Dataloader ----------------------------
-        self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
-        self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
+        self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
+        self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
 
         # ---------------------------- Build Evaluator ----------------------------
-        self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
+        self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
 
         # ---------------------------- Build Grad. Scaler ----------------------------
         self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
 
         # ---------------------------- Build Optimizer ----------------------------
-        self.optimizer_dict['lr0'] *= self.args.batch_size * self.grad_accumulate / 64
-        self.optimizer, self.start_epoch = build_optimizer(self.optimizer_dict, model, self.args.resume)
+        self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
+        self.optimizer, self.start_epoch = build_optimizer(self.optimizer_dict, model, args.resume)
 
         # ---------------------------- Build LR Scheduler ----------------------------
-        self.lr_scheduler, self.lf = build_lambda_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
+        self.lr_scheduler, self.lf = build_lambda_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
         self.lr_scheduler.last_epoch = self.start_epoch - 1  # do not move
         if self.args.resume and self.args.resume != 'None':
             self.lr_scheduler.step()
@@ -90,7 +90,6 @@ class YoloxTrainer(object):
         else:
             self.model_ema = None
 
-
     def train(self, model):
         for epoch in range(self.start_epoch, self.args.max_epoch):
             if self.args.distributed:
@@ -123,7 +122,7 @@ class YoloxTrainer(object):
                             'epoch': self.epoch,
                             'args': self.args}, 
                             checkpoint_path)
-                
+
             # train one epoch
             self.epoch = epoch
             self.train_one_epoch(model)
@@ -193,14 +192,21 @@ class YoloxTrainer(object):
             dist.barrier()
 
     def train_one_epoch(self, model):
+        metric_logger = MetricLogger(delimiter="  ")
+        metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
+        metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
+        metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
+        header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
+        epoch_size = len(self.train_loader)
+        print_freq = 10
+
         # basic parameters
         epoch_size = len(self.train_loader)
         img_size = self.args.img_size
-        t0 = time.time()
         nw = epoch_size * self.args.wp_epoch
 
         # Train one epoch
-        for iter_i, (images, targets) in enumerate(self.train_loader):
+        for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
             ni = iter_i + self.epoch * epoch_size
             # Warmup
             if ni <= nw:
@@ -216,7 +222,7 @@ class YoloxTrainer(object):
             images = images.to(self.device, non_blocking=True).float()
 
             # Multi scale
-            if self.args.multi_scale and ni % 10 == 0:
+            if self.args.multi_scale:
                 images, targets, img_size = self.rescale_image_targets(
                     images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
             else:
@@ -232,8 +238,8 @@ class YoloxTrainer(object):
                 # Compute loss
                 loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
                 losses = loss_dict['losses']
-                # Grad Accu
-                if self.grad_accumulate > 1: 
+                # Grad Accumulate
+                if self.grad_accumulate > 1:
                     losses /= self.grad_accumulate
 
                 loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
@@ -243,6 +249,13 @@ class YoloxTrainer(object):
 
             # Optimize
             if ni % self.grad_accumulate == 0:
+                grad_norm = None
+                if self.clip_grad > 0:
+                    # unscale gradients
+                    self.scaler.unscale_(self.optimizer)
+                    # clip gradients
+                    grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
+                # optimizer.step
                 self.scaler.step(self.optimizer)
                 self.scaler.update()
                 self.optimizer.zero_grad()
@@ -250,29 +263,11 @@ class YoloxTrainer(object):
                 if self.model_ema is not None:
                     self.model_ema.update(model)
 
-            # Logs
-            if distributed_utils.is_main_process() and iter_i % 10 == 0:
-                t1 = time.time()
-                cur_lr = [param_group['lr']  for param_group in self.optimizer.param_groups]
-                # basic infor
-                log =  '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
-                log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
-                log += '[lr: {:.6f}]'.format(cur_lr[2])
-                # loss infor
-                for k in loss_dict_reduced.keys():
-                    loss_val = loss_dict_reduced[k]
-                    if k == 'losses':
-                        loss_val *= self.grad_accumulate
-                    log += '[{}: {:.2f}]'.format(k, loss_val)
-
-                # other infor
-                log += '[time: {:.2f}]'.format(t1 - t0)
-                log += '[size: {}]'.format(img_size)
-
-                # print log infor
-                print(log, flush=True)
-                
-                t0 = time.time()
+            # Update log
+            metric_logger.update(**loss_dict_reduced)
+            metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
+            metric_logger.update(grad_norm=grad_norm)
+            metric_logger.update(size=img_size)
 
             if self.args.debug:
                 print("For debug mode, we only train 1 iteration")
@@ -281,60 +276,11 @@ class YoloxTrainer(object):
         # LR Schedule
         if not self.second_stage:
             self.lr_scheduler.step()
-        
-    def check_second_stage(self):
-        # set second stage
-        print('============== Second stage of Training ==============')
-        self.second_stage = True
-
-        # close mosaic augmentation
-        if self.train_loader.dataset.mosaic_prob > 0.:
-            print(' - Close < Mosaic Augmentation > ...')
-            self.train_loader.dataset.mosaic_prob = 0.
-            self.heavy_eval = True
-
-        # close mixup augmentation
-        if self.train_loader.dataset.mixup_prob > 0.:
-            print(' - Close < Mixup Augmentation > ...')
-            self.train_loader.dataset.mixup_prob = 0.
-            self.heavy_eval = True
 
-        # close rotation augmentation
-        if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
-            print(' - Close < degress of rotation > ...')
-            self.trans_cfg['degrees'] = 0.0
-        if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
-            print(' - Close < shear of rotation >...')
-            self.trans_cfg['shear'] = 0.0
-        if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
-            print(' - Close < perspective of rotation > ...')
-            self.trans_cfg['perspective'] = 0.0
-
-        # build a new transform for second stage
-        print(' - Rebuild transforms ...')
-        self.train_transform, self.trans_cfg = build_transform(
-            args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
-        self.train_loader.dataset.transform = self.train_transform
-        
-    def check_third_stage(self):
-        # set third stage
-        print('============== Third stage of Training ==============')
-        self.third_stage = True
-
-        # close random affine
-        if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
-            print(' - Close < translate of affine > ...')
-            self.trans_cfg['translate'] = 0.0
-        if 'scale' in self.trans_cfg.keys():
-            print(' - Close < scale of affine >...')
-            self.trans_cfg['scale'] = [1.0, 1.0]
+        # Gather the stats from all processes
+        metric_logger.synchronize_between_processes()
+        print("Averaged stats:", metric_logger)
 
-        # build a new transform for second stage
-        print(' - Rebuild transforms ...')
-        self.train_transform, self.trans_cfg = build_transform(
-            args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
-        self.train_loader.dataset.transform = self.train_transform
-        
     def refine_targets(self, targets, min_box_size):
         # rescale targets
         for tgt in targets:
@@ -367,7 +313,7 @@ class YoloxTrainer(object):
         # Choose a new image size
         new_img_size = random.randrange(min_img_size, max_img_size + max_stride, max_stride)
         new_img_size = new_img_size // max_stride * max_stride  # size
-        
+
         if new_img_size / old_img_size != 1:
             # interpolate
             images = torch.nn.functional.interpolate(
@@ -393,8 +339,61 @@ class YoloxTrainer(object):
 
         return images, targets, new_img_size
 
-## Real-time Convolutional Object Detector Trainer
-class RTCTrainer(object):
+    def check_second_stage(self):
+        # set second stage
+        print('============== Second stage of Training ==============')
+        self.second_stage = True
+
+        # close mosaic augmentation
+        if self.train_loader.dataset.mosaic_prob > 0.:
+            print(' - Close < Mosaic Augmentation > ...')
+            self.train_loader.dataset.mosaic_prob = 0.
+            self.heavy_eval = True
+
+        # close mixup augmentation
+        if self.train_loader.dataset.mixup_prob > 0.:
+            print(' - Close < Mixup Augmentation > ...')
+            self.train_loader.dataset.mixup_prob = 0.
+            self.heavy_eval = True
+
+        # close rotation augmentation
+        if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
+            print(' - Close < degress of rotation > ...')
+            self.trans_cfg['degrees'] = 0.0
+        if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
+            print(' - Close < shear of rotation >...')
+            self.trans_cfg['shear'] = 0.0
+        if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
+            print(' - Close < perspective of rotation > ...')
+            self.trans_cfg['perspective'] = 0.0
+
+        # build a new transform for second stage
+        print(' - Rebuild transforms ...')
+        self.train_transform, self.trans_cfg = build_transform(
+            args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
+        self.train_loader.dataset.transform = self.train_transform
+        
+    def check_third_stage(self):
+        # set third stage
+        print('============== Third stage of Training ==============')
+        self.third_stage = True
+
+        # close random affine
+        if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
+            print(' - Close < translate of affine > ...')
+            self.trans_cfg['translate'] = 0.0
+        if 'scale' in self.trans_cfg.keys():
+            print(' - Close < scale of affine >...')
+            self.trans_cfg['scale'] = [1.0, 1.0]
+
+        # build a new transform for second stage
+        print(' - Rebuild transforms ...')
+        self.train_transform, self.trans_cfg = build_transform(
+            args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
+        self.train_loader.dataset.transform = self.train_transform
+
+## Customed Trainer for YOLOX series
+class YoloxTrainer(object):
     def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
         # ------------------- basic parameters -------------------
         self.args = args
@@ -404,7 +403,7 @@ class RTCTrainer(object):
         self.criterion = criterion
         self.world_size = world_size
         self.grad_accumulate = args.grad_accumulate
-        self.clip_grad = 35
+        self.no_aug_epoch = args.no_aug_epoch
         self.heavy_eval = False
         # weak augmentatino stage
         self.second_stage = False
@@ -415,39 +414,39 @@ class RTCTrainer(object):
         self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
         os.makedirs(self.path_to_save, exist_ok=True)
 
-        # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
-        self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
-        self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
-        self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
+        # ---------------------------- Hyperparameters refer to YOLOX ----------------------------
+        self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.9, 'weight_decay': 5e-4, 'lr0': 0.01}
+        self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
+        self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
         self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}        
 
         # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
-        self.data_cfg  = data_cfg
+        self.data_cfg = data_cfg
         self.model_cfg = model_cfg
         self.trans_cfg = trans_cfg
 
         # ---------------------------- Build Transform ----------------------------
         self.train_transform, self.trans_cfg = build_transform(
-            args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
+            args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
         self.val_transform, _ = build_transform(
-            args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
+            args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
 
         # ---------------------------- Build Dataset & Dataloader ----------------------------
-        self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
-        self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
+        self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
+        self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
 
         # ---------------------------- Build Evaluator ----------------------------
-        self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
+        self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
 
         # ---------------------------- Build Grad. Scaler ----------------------------
         self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
 
         # ---------------------------- Build Optimizer ----------------------------
-        self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
-        self.optimizer, self.start_epoch = build_optimizer(self.optimizer_dict, model, args.resume)
+        self.optimizer_dict['lr0'] *= self.args.batch_size * self.grad_accumulate / 64
+        self.optimizer, self.start_epoch = build_optimizer(self.optimizer_dict, model, self.args.resume)
 
         # ---------------------------- Build LR Scheduler ----------------------------
-        self.lr_scheduler, self.lf = build_lambda_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
+        self.lr_scheduler, self.lf = build_lambda_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
         self.lr_scheduler.last_epoch = self.start_epoch - 1  # do not move
         if self.args.resume and self.args.resume != 'None':
             self.lr_scheduler.step()
@@ -459,6 +458,7 @@ class RTCTrainer(object):
         else:
             self.model_ema = None
 
+
     def train(self, model):
         for epoch in range(self.start_epoch, self.args.max_epoch):
             if self.args.distributed:
@@ -491,7 +491,7 @@ class RTCTrainer(object):
                             'epoch': self.epoch,
                             'args': self.args}, 
                             checkpoint_path)
-
+                
             # train one epoch
             self.epoch = epoch
             self.train_one_epoch(model)
@@ -561,21 +561,14 @@ class RTCTrainer(object):
             dist.barrier()
 
     def train_one_epoch(self, model):
-        metric_logger = MetricLogger(delimiter="  ")
-        metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
-        metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
-        metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
-        header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
-        epoch_size = len(self.train_loader)
-        print_freq = 10
-
         # basic parameters
         epoch_size = len(self.train_loader)
         img_size = self.args.img_size
+        t0 = time.time()
         nw = epoch_size * self.args.wp_epoch
 
         # Train one epoch
-        for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
+        for iter_i, (images, targets) in enumerate(self.train_loader):
             ni = iter_i + self.epoch * epoch_size
             # Warmup
             if ni <= nw:
@@ -591,7 +584,7 @@ class RTCTrainer(object):
             images = images.to(self.device, non_blocking=True).float()
 
             # Multi scale
-            if self.args.multi_scale:
+            if self.args.multi_scale and ni % 10 == 0:
                 images, targets, img_size = self.rescale_image_targets(
                     images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
             else:
@@ -607,8 +600,8 @@ class RTCTrainer(object):
                 # Compute loss
                 loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
                 losses = loss_dict['losses']
-                # Grad Accumulate
-                if self.grad_accumulate > 1:
+                # Grad Accu
+                if self.grad_accumulate > 1: 
                     losses /= self.grad_accumulate
 
                 loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
@@ -618,13 +611,6 @@ class RTCTrainer(object):
 
             # Optimize
             if ni % self.grad_accumulate == 0:
-                grad_norm = None
-                if self.clip_grad > 0:
-                    # unscale gradients
-                    self.scaler.unscale_(self.optimizer)
-                    # clip gradients
-                    grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
-                # optimizer.step
                 self.scaler.step(self.optimizer)
                 self.scaler.update()
                 self.optimizer.zero_grad()
@@ -632,11 +618,29 @@ class RTCTrainer(object):
                 if self.model_ema is not None:
                     self.model_ema.update(model)
 
-            # Update log
-            metric_logger.update(**loss_dict_reduced)
-            metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
-            metric_logger.update(grad_norm=grad_norm)
-            metric_logger.update(size=img_size)
+            # Logs
+            if distributed_utils.is_main_process() and iter_i % 10 == 0:
+                t1 = time.time()
+                cur_lr = [param_group['lr']  for param_group in self.optimizer.param_groups]
+                # basic infor
+                log =  '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
+                log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
+                log += '[lr: {:.6f}]'.format(cur_lr[2])
+                # loss infor
+                for k in loss_dict_reduced.keys():
+                    loss_val = loss_dict_reduced[k]
+                    if k == 'losses':
+                        loss_val *= self.grad_accumulate
+                    log += '[{}: {:.2f}]'.format(k, loss_val)
+
+                # other infor
+                log += '[time: {:.2f}]'.format(t1 - t0)
+                log += '[size: {}]'.format(img_size)
+
+                # print log infor
+                print(log, flush=True)
+                
+                t0 = time.time()
 
             if self.args.debug:
                 print("For debug mode, we only train 1 iteration")
@@ -645,11 +649,60 @@ class RTCTrainer(object):
         # LR Schedule
         if not self.second_stage:
             self.lr_scheduler.step()
+        
+    def check_second_stage(self):
+        # set second stage
+        print('============== Second stage of Training ==============')
+        self.second_stage = True
 
-        # Gather the stats from all processes
-        metric_logger.synchronize_between_processes()
-        print("Averaged stats:", metric_logger)
+        # close mosaic augmentation
+        if self.train_loader.dataset.mosaic_prob > 0.:
+            print(' - Close < Mosaic Augmentation > ...')
+            self.train_loader.dataset.mosaic_prob = 0.
+            self.heavy_eval = True
 
+        # close mixup augmentation
+        if self.train_loader.dataset.mixup_prob > 0.:
+            print(' - Close < Mixup Augmentation > ...')
+            self.train_loader.dataset.mixup_prob = 0.
+            self.heavy_eval = True
+
+        # close rotation augmentation
+        if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
+            print(' - Close < degress of rotation > ...')
+            self.trans_cfg['degrees'] = 0.0
+        if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
+            print(' - Close < shear of rotation >...')
+            self.trans_cfg['shear'] = 0.0
+        if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
+            print(' - Close < perspective of rotation > ...')
+            self.trans_cfg['perspective'] = 0.0
+
+        # build a new transform for second stage
+        print(' - Rebuild transforms ...')
+        self.train_transform, self.trans_cfg = build_transform(
+            args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
+        self.train_loader.dataset.transform = self.train_transform
+        
+    def check_third_stage(self):
+        # set third stage
+        print('============== Third stage of Training ==============')
+        self.third_stage = True
+
+        # close random affine
+        if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
+            print(' - Close < translate of affine > ...')
+            self.trans_cfg['translate'] = 0.0
+        if 'scale' in self.trans_cfg.keys():
+            print(' - Close < scale of affine >...')
+            self.trans_cfg['scale'] = [1.0, 1.0]
+
+        # build a new transform for second stage
+        print(' - Rebuild transforms ...')
+        self.train_transform, self.trans_cfg = build_transform(
+            args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
+        self.train_loader.dataset.transform = self.train_transform
+        
     def refine_targets(self, targets, min_box_size):
         # rescale targets
         for tgt in targets:
@@ -682,7 +735,7 @@ class RTCTrainer(object):
         # Choose a new image size
         new_img_size = random.randrange(min_img_size, max_img_size + max_stride, max_stride)
         new_img_size = new_img_size // max_stride * max_stride  # size
-
+        
         if new_img_size / old_img_size != 1:
             # interpolate
             images = torch.nn.functional.interpolate(
@@ -708,65 +761,12 @@ class RTCTrainer(object):
 
         return images, targets, new_img_size
 
-    def check_second_stage(self):
-        # set second stage
-        print('============== Second stage of Training ==============')
-        self.second_stage = True
-
-        # close mosaic augmentation
-        if self.train_loader.dataset.mosaic_prob > 0.:
-            print(' - Close < Mosaic Augmentation > ...')
-            self.train_loader.dataset.mosaic_prob = 0.
-            self.heavy_eval = True
-
-        # close mixup augmentation
-        if self.train_loader.dataset.mixup_prob > 0.:
-            print(' - Close < Mixup Augmentation > ...')
-            self.train_loader.dataset.mixup_prob = 0.
-            self.heavy_eval = True
-
-        # close rotation augmentation
-        if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
-            print(' - Close < degress of rotation > ...')
-            self.trans_cfg['degrees'] = 0.0
-        if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
-            print(' - Close < shear of rotation >...')
-            self.trans_cfg['shear'] = 0.0
-        if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
-            print(' - Close < perspective of rotation > ...')
-            self.trans_cfg['perspective'] = 0.0
-
-        # build a new transform for second stage
-        print(' - Rebuild transforms ...')
-        self.train_transform, self.trans_cfg = build_transform(
-            args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
-        self.train_loader.dataset.transform = self.train_transform
-        
-    def check_third_stage(self):
-        # set third stage
-        print('============== Third stage of Training ==============')
-        self.third_stage = True
-
-        # close random affine
-        if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
-            print(' - Close < translate of affine > ...')
-            self.trans_cfg['translate'] = 0.0
-        if 'scale' in self.trans_cfg.keys():
-            print(' - Close < scale of affine >...')
-            self.trans_cfg['scale'] = [1.0, 1.0]
-
-        # build a new transform for second stage
-        print(' - Rebuild transforms ...')
-        self.train_transform, self.trans_cfg = build_transform(
-            args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
-        self.train_loader.dataset.transform = self.train_transform
-
 
 # Build Trainer
 def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
     # ----------------------- Det trainers -----------------------
     if   model_cfg['trainer_type'] == 'yolo':
-        return RTCTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
+        return YoloTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
     elif model_cfg['trainer_type'] == 'yolox':
         return YoloxTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
     else: