|
|
@@ -24,8 +24,8 @@ from dataset.build import build_dataset, build_transform
|
|
|
|
|
|
|
|
|
# ----------------------- Det trainers -----------------------
|
|
|
-## YOLOX Trainer
|
|
|
-class YoloxTrainer(object):
|
|
|
+## Trainer for general YOLO series
|
|
|
+class YoloTrainer(object):
|
|
|
def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
|
|
|
# ------------------- basic parameters -------------------
|
|
|
self.args = args
|
|
|
@@ -35,7 +35,7 @@ class YoloxTrainer(object):
|
|
|
self.criterion = criterion
|
|
|
self.world_size = world_size
|
|
|
self.grad_accumulate = args.grad_accumulate
|
|
|
- self.no_aug_epoch = args.no_aug_epoch
|
|
|
+ self.clip_grad = 35
|
|
|
self.heavy_eval = False
|
|
|
# weak augmentatino stage
|
|
|
self.second_stage = False
|
|
|
@@ -46,39 +46,39 @@ class YoloxTrainer(object):
|
|
|
self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
|
|
|
os.makedirs(self.path_to_save, exist_ok=True)
|
|
|
|
|
|
- # ---------------------------- Hyperparameters refer to YOLOX ----------------------------
|
|
|
- self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.9, 'weight_decay': 5e-4, 'lr0': 0.01}
|
|
|
- self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
|
|
|
- self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
|
|
|
+ # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
|
|
|
+ self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
|
|
|
+ self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
|
|
|
+ self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
|
|
|
self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
|
|
|
|
|
|
# ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
|
|
|
- self.data_cfg = data_cfg
|
|
|
+ self.data_cfg = data_cfg
|
|
|
self.model_cfg = model_cfg
|
|
|
self.trans_cfg = trans_cfg
|
|
|
|
|
|
# ---------------------------- Build Transform ----------------------------
|
|
|
self.train_transform, self.trans_cfg = build_transform(
|
|
|
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
+ args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
self.val_transform, _ = build_transform(
|
|
|
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
|
|
|
+ args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
|
|
|
|
|
|
# ---------------------------- Build Dataset & Dataloader ----------------------------
|
|
|
- self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
|
|
|
- self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
|
|
|
+ self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
|
|
|
+ self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
|
|
|
|
|
|
# ---------------------------- Build Evaluator ----------------------------
|
|
|
- self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
|
|
|
+ self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
|
|
|
|
|
|
# ---------------------------- Build Grad. Scaler ----------------------------
|
|
|
self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
|
|
|
|
|
|
# ---------------------------- Build Optimizer ----------------------------
|
|
|
- self.optimizer_dict['lr0'] *= self.args.batch_size * self.grad_accumulate / 64
|
|
|
- self.optimizer, self.start_epoch = build_optimizer(self.optimizer_dict, model, self.args.resume)
|
|
|
+ self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
|
|
|
+ self.optimizer, self.start_epoch = build_optimizer(self.optimizer_dict, model, args.resume)
|
|
|
|
|
|
# ---------------------------- Build LR Scheduler ----------------------------
|
|
|
- self.lr_scheduler, self.lf = build_lambda_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
|
|
|
+ self.lr_scheduler, self.lf = build_lambda_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
|
|
|
self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
|
|
|
if self.args.resume and self.args.resume != 'None':
|
|
|
self.lr_scheduler.step()
|
|
|
@@ -90,7 +90,6 @@ class YoloxTrainer(object):
|
|
|
else:
|
|
|
self.model_ema = None
|
|
|
|
|
|
-
|
|
|
def train(self, model):
|
|
|
for epoch in range(self.start_epoch, self.args.max_epoch):
|
|
|
if self.args.distributed:
|
|
|
@@ -123,7 +122,7 @@ class YoloxTrainer(object):
|
|
|
'epoch': self.epoch,
|
|
|
'args': self.args},
|
|
|
checkpoint_path)
|
|
|
-
|
|
|
+
|
|
|
# train one epoch
|
|
|
self.epoch = epoch
|
|
|
self.train_one_epoch(model)
|
|
|
@@ -193,14 +192,21 @@ class YoloxTrainer(object):
|
|
|
dist.barrier()
|
|
|
|
|
|
def train_one_epoch(self, model):
|
|
|
+ metric_logger = MetricLogger(delimiter=" ")
|
|
|
+ metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
|
|
|
+ metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
|
|
|
+ metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
|
|
|
+ header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
|
|
|
+ epoch_size = len(self.train_loader)
|
|
|
+ print_freq = 10
|
|
|
+
|
|
|
# basic parameters
|
|
|
epoch_size = len(self.train_loader)
|
|
|
img_size = self.args.img_size
|
|
|
- t0 = time.time()
|
|
|
nw = epoch_size * self.args.wp_epoch
|
|
|
|
|
|
# Train one epoch
|
|
|
- for iter_i, (images, targets) in enumerate(self.train_loader):
|
|
|
+ for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
|
|
|
ni = iter_i + self.epoch * epoch_size
|
|
|
# Warmup
|
|
|
if ni <= nw:
|
|
|
@@ -216,7 +222,7 @@ class YoloxTrainer(object):
|
|
|
images = images.to(self.device, non_blocking=True).float()
|
|
|
|
|
|
# Multi scale
|
|
|
- if self.args.multi_scale and ni % 10 == 0:
|
|
|
+ if self.args.multi_scale:
|
|
|
images, targets, img_size = self.rescale_image_targets(
|
|
|
images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
|
|
|
else:
|
|
|
@@ -232,8 +238,8 @@ class YoloxTrainer(object):
|
|
|
# Compute loss
|
|
|
loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
|
|
|
losses = loss_dict['losses']
|
|
|
- # Grad Accu
|
|
|
- if self.grad_accumulate > 1:
|
|
|
+ # Grad Accumulate
|
|
|
+ if self.grad_accumulate > 1:
|
|
|
losses /= self.grad_accumulate
|
|
|
|
|
|
loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
|
|
|
@@ -243,6 +249,13 @@ class YoloxTrainer(object):
|
|
|
|
|
|
# Optimize
|
|
|
if ni % self.grad_accumulate == 0:
|
|
|
+ grad_norm = None
|
|
|
+ if self.clip_grad > 0:
|
|
|
+ # unscale gradients
|
|
|
+ self.scaler.unscale_(self.optimizer)
|
|
|
+ # clip gradients
|
|
|
+ grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
|
|
|
+ # optimizer.step
|
|
|
self.scaler.step(self.optimizer)
|
|
|
self.scaler.update()
|
|
|
self.optimizer.zero_grad()
|
|
|
@@ -250,29 +263,11 @@ class YoloxTrainer(object):
|
|
|
if self.model_ema is not None:
|
|
|
self.model_ema.update(model)
|
|
|
|
|
|
- # Logs
|
|
|
- if distributed_utils.is_main_process() and iter_i % 10 == 0:
|
|
|
- t1 = time.time()
|
|
|
- cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
|
|
|
- # basic infor
|
|
|
- log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
|
|
|
- log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
|
|
|
- log += '[lr: {:.6f}]'.format(cur_lr[2])
|
|
|
- # loss infor
|
|
|
- for k in loss_dict_reduced.keys():
|
|
|
- loss_val = loss_dict_reduced[k]
|
|
|
- if k == 'losses':
|
|
|
- loss_val *= self.grad_accumulate
|
|
|
- log += '[{}: {:.2f}]'.format(k, loss_val)
|
|
|
-
|
|
|
- # other infor
|
|
|
- log += '[time: {:.2f}]'.format(t1 - t0)
|
|
|
- log += '[size: {}]'.format(img_size)
|
|
|
-
|
|
|
- # print log infor
|
|
|
- print(log, flush=True)
|
|
|
-
|
|
|
- t0 = time.time()
|
|
|
+ # Update log
|
|
|
+ metric_logger.update(**loss_dict_reduced)
|
|
|
+ metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
|
|
|
+ metric_logger.update(grad_norm=grad_norm)
|
|
|
+ metric_logger.update(size=img_size)
|
|
|
|
|
|
if self.args.debug:
|
|
|
print("For debug mode, we only train 1 iteration")
|
|
|
@@ -281,60 +276,11 @@ class YoloxTrainer(object):
|
|
|
# LR Schedule
|
|
|
if not self.second_stage:
|
|
|
self.lr_scheduler.step()
|
|
|
-
|
|
|
- def check_second_stage(self):
|
|
|
- # set second stage
|
|
|
- print('============== Second stage of Training ==============')
|
|
|
- self.second_stage = True
|
|
|
-
|
|
|
- # close mosaic augmentation
|
|
|
- if self.train_loader.dataset.mosaic_prob > 0.:
|
|
|
- print(' - Close < Mosaic Augmentation > ...')
|
|
|
- self.train_loader.dataset.mosaic_prob = 0.
|
|
|
- self.heavy_eval = True
|
|
|
-
|
|
|
- # close mixup augmentation
|
|
|
- if self.train_loader.dataset.mixup_prob > 0.:
|
|
|
- print(' - Close < Mixup Augmentation > ...')
|
|
|
- self.train_loader.dataset.mixup_prob = 0.
|
|
|
- self.heavy_eval = True
|
|
|
|
|
|
- # close rotation augmentation
|
|
|
- if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
|
|
|
- print(' - Close < degress of rotation > ...')
|
|
|
- self.trans_cfg['degrees'] = 0.0
|
|
|
- if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
|
|
|
- print(' - Close < shear of rotation >...')
|
|
|
- self.trans_cfg['shear'] = 0.0
|
|
|
- if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
|
|
|
- print(' - Close < perspective of rotation > ...')
|
|
|
- self.trans_cfg['perspective'] = 0.0
|
|
|
-
|
|
|
- # build a new transform for second stage
|
|
|
- print(' - Rebuild transforms ...')
|
|
|
- self.train_transform, self.trans_cfg = build_transform(
|
|
|
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
- self.train_loader.dataset.transform = self.train_transform
|
|
|
-
|
|
|
- def check_third_stage(self):
|
|
|
- # set third stage
|
|
|
- print('============== Third stage of Training ==============')
|
|
|
- self.third_stage = True
|
|
|
-
|
|
|
- # close random affine
|
|
|
- if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
|
|
|
- print(' - Close < translate of affine > ...')
|
|
|
- self.trans_cfg['translate'] = 0.0
|
|
|
- if 'scale' in self.trans_cfg.keys():
|
|
|
- print(' - Close < scale of affine >...')
|
|
|
- self.trans_cfg['scale'] = [1.0, 1.0]
|
|
|
+ # Gather the stats from all processes
|
|
|
+ metric_logger.synchronize_between_processes()
|
|
|
+ print("Averaged stats:", metric_logger)
|
|
|
|
|
|
- # build a new transform for second stage
|
|
|
- print(' - Rebuild transforms ...')
|
|
|
- self.train_transform, self.trans_cfg = build_transform(
|
|
|
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
- self.train_loader.dataset.transform = self.train_transform
|
|
|
-
|
|
|
def refine_targets(self, targets, min_box_size):
|
|
|
# rescale targets
|
|
|
for tgt in targets:
|
|
|
@@ -367,7 +313,7 @@ class YoloxTrainer(object):
|
|
|
# Choose a new image size
|
|
|
new_img_size = random.randrange(min_img_size, max_img_size + max_stride, max_stride)
|
|
|
new_img_size = new_img_size // max_stride * max_stride # size
|
|
|
-
|
|
|
+
|
|
|
if new_img_size / old_img_size != 1:
|
|
|
# interpolate
|
|
|
images = torch.nn.functional.interpolate(
|
|
|
@@ -393,8 +339,61 @@ class YoloxTrainer(object):
|
|
|
|
|
|
return images, targets, new_img_size
|
|
|
|
|
|
-## Real-time Convolutional Object Detector Trainer
|
|
|
-class RTCTrainer(object):
|
|
|
+ def check_second_stage(self):
|
|
|
+ # set second stage
|
|
|
+ print('============== Second stage of Training ==============')
|
|
|
+ self.second_stage = True
|
|
|
+
|
|
|
+ # close mosaic augmentation
|
|
|
+ if self.train_loader.dataset.mosaic_prob > 0.:
|
|
|
+ print(' - Close < Mosaic Augmentation > ...')
|
|
|
+ self.train_loader.dataset.mosaic_prob = 0.
|
|
|
+ self.heavy_eval = True
|
|
|
+
|
|
|
+ # close mixup augmentation
|
|
|
+ if self.train_loader.dataset.mixup_prob > 0.:
|
|
|
+ print(' - Close < Mixup Augmentation > ...')
|
|
|
+ self.train_loader.dataset.mixup_prob = 0.
|
|
|
+ self.heavy_eval = True
|
|
|
+
|
|
|
+ # close rotation augmentation
|
|
|
+ if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
|
|
|
+ print(' - Close < degress of rotation > ...')
|
|
|
+ self.trans_cfg['degrees'] = 0.0
|
|
|
+ if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
|
|
|
+ print(' - Close < shear of rotation >...')
|
|
|
+ self.trans_cfg['shear'] = 0.0
|
|
|
+ if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
|
|
|
+ print(' - Close < perspective of rotation > ...')
|
|
|
+ self.trans_cfg['perspective'] = 0.0
|
|
|
+
|
|
|
+ # build a new transform for second stage
|
|
|
+ print(' - Rebuild transforms ...')
|
|
|
+ self.train_transform, self.trans_cfg = build_transform(
|
|
|
+ args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
+ self.train_loader.dataset.transform = self.train_transform
|
|
|
+
|
|
|
+ def check_third_stage(self):
|
|
|
+ # set third stage
|
|
|
+ print('============== Third stage of Training ==============')
|
|
|
+ self.third_stage = True
|
|
|
+
|
|
|
+ # close random affine
|
|
|
+ if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
|
|
|
+ print(' - Close < translate of affine > ...')
|
|
|
+ self.trans_cfg['translate'] = 0.0
|
|
|
+ if 'scale' in self.trans_cfg.keys():
|
|
|
+ print(' - Close < scale of affine >...')
|
|
|
+ self.trans_cfg['scale'] = [1.0, 1.0]
|
|
|
+
|
|
|
+ # build a new transform for second stage
|
|
|
+ print(' - Rebuild transforms ...')
|
|
|
+ self.train_transform, self.trans_cfg = build_transform(
|
|
|
+ args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
+ self.train_loader.dataset.transform = self.train_transform
|
|
|
+
|
|
|
+## Customed Trainer for YOLOX series
|
|
|
+class YoloxTrainer(object):
|
|
|
def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
|
|
|
# ------------------- basic parameters -------------------
|
|
|
self.args = args
|
|
|
@@ -404,7 +403,7 @@ class RTCTrainer(object):
|
|
|
self.criterion = criterion
|
|
|
self.world_size = world_size
|
|
|
self.grad_accumulate = args.grad_accumulate
|
|
|
- self.clip_grad = 35
|
|
|
+ self.no_aug_epoch = args.no_aug_epoch
|
|
|
self.heavy_eval = False
|
|
|
# weak augmentatino stage
|
|
|
self.second_stage = False
|
|
|
@@ -415,39 +414,39 @@ class RTCTrainer(object):
|
|
|
self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
|
|
|
os.makedirs(self.path_to_save, exist_ok=True)
|
|
|
|
|
|
- # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
|
|
|
- self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
|
|
|
- self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
|
|
|
- self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
|
|
|
+ # ---------------------------- Hyperparameters refer to YOLOX ----------------------------
|
|
|
+ self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.9, 'weight_decay': 5e-4, 'lr0': 0.01}
|
|
|
+ self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
|
|
|
+ self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
|
|
|
self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
|
|
|
|
|
|
# ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
|
|
|
- self.data_cfg = data_cfg
|
|
|
+ self.data_cfg = data_cfg
|
|
|
self.model_cfg = model_cfg
|
|
|
self.trans_cfg = trans_cfg
|
|
|
|
|
|
# ---------------------------- Build Transform ----------------------------
|
|
|
self.train_transform, self.trans_cfg = build_transform(
|
|
|
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
+ args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
self.val_transform, _ = build_transform(
|
|
|
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
|
|
|
+ args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
|
|
|
|
|
|
# ---------------------------- Build Dataset & Dataloader ----------------------------
|
|
|
- self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
|
|
|
- self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
|
|
|
+ self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
|
|
|
+ self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
|
|
|
|
|
|
# ---------------------------- Build Evaluator ----------------------------
|
|
|
- self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
|
|
|
+ self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
|
|
|
|
|
|
# ---------------------------- Build Grad. Scaler ----------------------------
|
|
|
self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
|
|
|
|
|
|
# ---------------------------- Build Optimizer ----------------------------
|
|
|
- self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
|
|
|
- self.optimizer, self.start_epoch = build_optimizer(self.optimizer_dict, model, args.resume)
|
|
|
+ self.optimizer_dict['lr0'] *= self.args.batch_size * self.grad_accumulate / 64
|
|
|
+ self.optimizer, self.start_epoch = build_optimizer(self.optimizer_dict, model, self.args.resume)
|
|
|
|
|
|
# ---------------------------- Build LR Scheduler ----------------------------
|
|
|
- self.lr_scheduler, self.lf = build_lambda_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
|
|
|
+ self.lr_scheduler, self.lf = build_lambda_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
|
|
|
self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
|
|
|
if self.args.resume and self.args.resume != 'None':
|
|
|
self.lr_scheduler.step()
|
|
|
@@ -459,6 +458,7 @@ class RTCTrainer(object):
|
|
|
else:
|
|
|
self.model_ema = None
|
|
|
|
|
|
+
|
|
|
def train(self, model):
|
|
|
for epoch in range(self.start_epoch, self.args.max_epoch):
|
|
|
if self.args.distributed:
|
|
|
@@ -491,7 +491,7 @@ class RTCTrainer(object):
|
|
|
'epoch': self.epoch,
|
|
|
'args': self.args},
|
|
|
checkpoint_path)
|
|
|
-
|
|
|
+
|
|
|
# train one epoch
|
|
|
self.epoch = epoch
|
|
|
self.train_one_epoch(model)
|
|
|
@@ -561,21 +561,14 @@ class RTCTrainer(object):
|
|
|
dist.barrier()
|
|
|
|
|
|
def train_one_epoch(self, model):
|
|
|
- metric_logger = MetricLogger(delimiter=" ")
|
|
|
- metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
|
|
|
- metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
|
|
|
- metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
|
|
|
- header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
|
|
|
- epoch_size = len(self.train_loader)
|
|
|
- print_freq = 10
|
|
|
-
|
|
|
# basic parameters
|
|
|
epoch_size = len(self.train_loader)
|
|
|
img_size = self.args.img_size
|
|
|
+ t0 = time.time()
|
|
|
nw = epoch_size * self.args.wp_epoch
|
|
|
|
|
|
# Train one epoch
|
|
|
- for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
|
|
|
+ for iter_i, (images, targets) in enumerate(self.train_loader):
|
|
|
ni = iter_i + self.epoch * epoch_size
|
|
|
# Warmup
|
|
|
if ni <= nw:
|
|
|
@@ -591,7 +584,7 @@ class RTCTrainer(object):
|
|
|
images = images.to(self.device, non_blocking=True).float()
|
|
|
|
|
|
# Multi scale
|
|
|
- if self.args.multi_scale:
|
|
|
+ if self.args.multi_scale and ni % 10 == 0:
|
|
|
images, targets, img_size = self.rescale_image_targets(
|
|
|
images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
|
|
|
else:
|
|
|
@@ -607,8 +600,8 @@ class RTCTrainer(object):
|
|
|
# Compute loss
|
|
|
loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
|
|
|
losses = loss_dict['losses']
|
|
|
- # Grad Accumulate
|
|
|
- if self.grad_accumulate > 1:
|
|
|
+ # Grad Accu
|
|
|
+ if self.grad_accumulate > 1:
|
|
|
losses /= self.grad_accumulate
|
|
|
|
|
|
loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
|
|
|
@@ -618,13 +611,6 @@ class RTCTrainer(object):
|
|
|
|
|
|
# Optimize
|
|
|
if ni % self.grad_accumulate == 0:
|
|
|
- grad_norm = None
|
|
|
- if self.clip_grad > 0:
|
|
|
- # unscale gradients
|
|
|
- self.scaler.unscale_(self.optimizer)
|
|
|
- # clip gradients
|
|
|
- grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
|
|
|
- # optimizer.step
|
|
|
self.scaler.step(self.optimizer)
|
|
|
self.scaler.update()
|
|
|
self.optimizer.zero_grad()
|
|
|
@@ -632,11 +618,29 @@ class RTCTrainer(object):
|
|
|
if self.model_ema is not None:
|
|
|
self.model_ema.update(model)
|
|
|
|
|
|
- # Update log
|
|
|
- metric_logger.update(**loss_dict_reduced)
|
|
|
- metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
|
|
|
- metric_logger.update(grad_norm=grad_norm)
|
|
|
- metric_logger.update(size=img_size)
|
|
|
+ # Logs
|
|
|
+ if distributed_utils.is_main_process() and iter_i % 10 == 0:
|
|
|
+ t1 = time.time()
|
|
|
+ cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
|
|
|
+ # basic infor
|
|
|
+ log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
|
|
|
+ log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
|
|
|
+ log += '[lr: {:.6f}]'.format(cur_lr[2])
|
|
|
+ # loss infor
|
|
|
+ for k in loss_dict_reduced.keys():
|
|
|
+ loss_val = loss_dict_reduced[k]
|
|
|
+ if k == 'losses':
|
|
|
+ loss_val *= self.grad_accumulate
|
|
|
+ log += '[{}: {:.2f}]'.format(k, loss_val)
|
|
|
+
|
|
|
+ # other infor
|
|
|
+ log += '[time: {:.2f}]'.format(t1 - t0)
|
|
|
+ log += '[size: {}]'.format(img_size)
|
|
|
+
|
|
|
+ # print log infor
|
|
|
+ print(log, flush=True)
|
|
|
+
|
|
|
+ t0 = time.time()
|
|
|
|
|
|
if self.args.debug:
|
|
|
print("For debug mode, we only train 1 iteration")
|
|
|
@@ -645,11 +649,60 @@ class RTCTrainer(object):
|
|
|
# LR Schedule
|
|
|
if not self.second_stage:
|
|
|
self.lr_scheduler.step()
|
|
|
+
|
|
|
+ def check_second_stage(self):
|
|
|
+ # set second stage
|
|
|
+ print('============== Second stage of Training ==============')
|
|
|
+ self.second_stage = True
|
|
|
|
|
|
- # Gather the stats from all processes
|
|
|
- metric_logger.synchronize_between_processes()
|
|
|
- print("Averaged stats:", metric_logger)
|
|
|
+ # close mosaic augmentation
|
|
|
+ if self.train_loader.dataset.mosaic_prob > 0.:
|
|
|
+ print(' - Close < Mosaic Augmentation > ...')
|
|
|
+ self.train_loader.dataset.mosaic_prob = 0.
|
|
|
+ self.heavy_eval = True
|
|
|
|
|
|
+ # close mixup augmentation
|
|
|
+ if self.train_loader.dataset.mixup_prob > 0.:
|
|
|
+ print(' - Close < Mixup Augmentation > ...')
|
|
|
+ self.train_loader.dataset.mixup_prob = 0.
|
|
|
+ self.heavy_eval = True
|
|
|
+
|
|
|
+ # close rotation augmentation
|
|
|
+ if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
|
|
|
+ print(' - Close < degress of rotation > ...')
|
|
|
+ self.trans_cfg['degrees'] = 0.0
|
|
|
+ if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
|
|
|
+ print(' - Close < shear of rotation >...')
|
|
|
+ self.trans_cfg['shear'] = 0.0
|
|
|
+ if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
|
|
|
+ print(' - Close < perspective of rotation > ...')
|
|
|
+ self.trans_cfg['perspective'] = 0.0
|
|
|
+
|
|
|
+ # build a new transform for second stage
|
|
|
+ print(' - Rebuild transforms ...')
|
|
|
+ self.train_transform, self.trans_cfg = build_transform(
|
|
|
+ args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
+ self.train_loader.dataset.transform = self.train_transform
|
|
|
+
|
|
|
+ def check_third_stage(self):
|
|
|
+ # set third stage
|
|
|
+ print('============== Third stage of Training ==============')
|
|
|
+ self.third_stage = True
|
|
|
+
|
|
|
+ # close random affine
|
|
|
+ if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
|
|
|
+ print(' - Close < translate of affine > ...')
|
|
|
+ self.trans_cfg['translate'] = 0.0
|
|
|
+ if 'scale' in self.trans_cfg.keys():
|
|
|
+ print(' - Close < scale of affine >...')
|
|
|
+ self.trans_cfg['scale'] = [1.0, 1.0]
|
|
|
+
|
|
|
+ # build a new transform for second stage
|
|
|
+ print(' - Rebuild transforms ...')
|
|
|
+ self.train_transform, self.trans_cfg = build_transform(
|
|
|
+ args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
+ self.train_loader.dataset.transform = self.train_transform
|
|
|
+
|
|
|
def refine_targets(self, targets, min_box_size):
|
|
|
# rescale targets
|
|
|
for tgt in targets:
|
|
|
@@ -682,7 +735,7 @@ class RTCTrainer(object):
|
|
|
# Choose a new image size
|
|
|
new_img_size = random.randrange(min_img_size, max_img_size + max_stride, max_stride)
|
|
|
new_img_size = new_img_size // max_stride * max_stride # size
|
|
|
-
|
|
|
+
|
|
|
if new_img_size / old_img_size != 1:
|
|
|
# interpolate
|
|
|
images = torch.nn.functional.interpolate(
|
|
|
@@ -708,65 +761,12 @@ class RTCTrainer(object):
|
|
|
|
|
|
return images, targets, new_img_size
|
|
|
|
|
|
- def check_second_stage(self):
|
|
|
- # set second stage
|
|
|
- print('============== Second stage of Training ==============')
|
|
|
- self.second_stage = True
|
|
|
-
|
|
|
- # close mosaic augmentation
|
|
|
- if self.train_loader.dataset.mosaic_prob > 0.:
|
|
|
- print(' - Close < Mosaic Augmentation > ...')
|
|
|
- self.train_loader.dataset.mosaic_prob = 0.
|
|
|
- self.heavy_eval = True
|
|
|
-
|
|
|
- # close mixup augmentation
|
|
|
- if self.train_loader.dataset.mixup_prob > 0.:
|
|
|
- print(' - Close < Mixup Augmentation > ...')
|
|
|
- self.train_loader.dataset.mixup_prob = 0.
|
|
|
- self.heavy_eval = True
|
|
|
-
|
|
|
- # close rotation augmentation
|
|
|
- if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
|
|
|
- print(' - Close < degress of rotation > ...')
|
|
|
- self.trans_cfg['degrees'] = 0.0
|
|
|
- if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
|
|
|
- print(' - Close < shear of rotation >...')
|
|
|
- self.trans_cfg['shear'] = 0.0
|
|
|
- if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
|
|
|
- print(' - Close < perspective of rotation > ...')
|
|
|
- self.trans_cfg['perspective'] = 0.0
|
|
|
-
|
|
|
- # build a new transform for second stage
|
|
|
- print(' - Rebuild transforms ...')
|
|
|
- self.train_transform, self.trans_cfg = build_transform(
|
|
|
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
- self.train_loader.dataset.transform = self.train_transform
|
|
|
-
|
|
|
- def check_third_stage(self):
|
|
|
- # set third stage
|
|
|
- print('============== Third stage of Training ==============')
|
|
|
- self.third_stage = True
|
|
|
-
|
|
|
- # close random affine
|
|
|
- if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
|
|
|
- print(' - Close < translate of affine > ...')
|
|
|
- self.trans_cfg['translate'] = 0.0
|
|
|
- if 'scale' in self.trans_cfg.keys():
|
|
|
- print(' - Close < scale of affine >...')
|
|
|
- self.trans_cfg['scale'] = [1.0, 1.0]
|
|
|
-
|
|
|
- # build a new transform for second stage
|
|
|
- print(' - Rebuild transforms ...')
|
|
|
- self.train_transform, self.trans_cfg = build_transform(
|
|
|
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
- self.train_loader.dataset.transform = self.train_transform
|
|
|
-
|
|
|
|
|
|
# Build Trainer
|
|
|
def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
|
|
|
# ----------------------- Det trainers -----------------------
|
|
|
if model_cfg['trainer_type'] == 'yolo':
|
|
|
- return RTCTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
|
|
|
+ return YoloTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
|
|
|
elif model_cfg['trainer_type'] == 'yolox':
|
|
|
return YoloxTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
|
|
|
else:
|