|
@@ -4,7 +4,7 @@
|
|
|
|---------|--------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|
|
|
|---------|--------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|
|
|
|
| YOLOX-N | CSPDarkNet-N | 8xb8 | 640 | 30.4 | 48.9 | 7.5 | 2.3 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_n_coco.pth) |
|
|
| YOLOX-N | CSPDarkNet-N | 8xb8 | 640 | 30.4 | 48.9 | 7.5 | 2.3 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_n_coco.pth) |
|
|
|
| YOLOX-S | CSPDarkNet-S | 8xb8 | 640 | 39.0 | 58.8 | 26.8 | 8.9 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_s_coco.pth) |
|
|
| YOLOX-S | CSPDarkNet-S | 8xb8 | 640 | 39.0 | 58.8 | 26.8 | 8.9 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_s_coco.pth) |
|
|
|
-| YOLOX-M | CSPDarkNet-M | 8xb8 | 640 | 44.6 | 63.8 | 74.3 | 25.4 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_m_coco.pth) |
|
|
|
|
|
|
|
+| YOLOX-M | CSPDarkNet-M | 8xb8 | 640 | 46.2 | 66.0 | 74.3 | 25.4 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_m_coco.pth) |
|
|
|
| YOLOX-L | CSPDarkNet-L | 8xb8 | 640 | 48.7 | 68.0 | 155.4 | 54.2 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_l_coco.pth) |
|
|
| YOLOX-L | CSPDarkNet-L | 8xb8 | 640 | 48.7 | 68.0 | 155.4 | 54.2 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_l_coco.pth) |
|
|
|
|
|
|
|
|
- For training, we train YOLOX series with 300 epochs on COCO.
|
|
- For training, we train YOLOX series with 300 epochs on COCO.
|