ソースを参照

train YOLOv7-L

yjh0410 2 年 前
コミット
7fbd73fde5
2 ファイル変更3 行追加3 行削除
  1. 2 2
      README.md
  2. 1 1
      train.sh

+ 2 - 2
README.md

@@ -125,7 +125,7 @@ python train.py --cuda -d coco --root path/to/COCO -v yolov1 -bs 16 --max_epoch
 | YOLOv5-N      | CSPDarkNet-N       |  640  |  250  |       |                        |                   |   7.7             |   2.4              |  |
 | YOLOv5-S      | CSPDarkNet-S       |  640  |  250  |       |                        |                   |   27.1            |   9.0              |  |
 | YOLOv5-M      | CSPDarkNet-M       |  640  |  250  |       |                        |                   |   74.3            |   25.4             |  |
-| YOLOv5-L      | CSPDarkNet-L       |  640  |  250  |       |                        |                   |   155.6           |   54.2             |  |
+| YOLOv5-L      | CSPDarkNet-L       |  640  |  250  |       |         46.7           |       65.5        |   155.6           |   54.2             | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov5_l_coco.pth) |
 
 * YOLOX:
 
@@ -137,7 +137,7 @@ python train.py --cuda -d coco --root path/to/COCO -v yolov1 -bs 16 --max_epoch
 
 | Model         |   Backbone         | Scale | Epoch |  FPS  | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
 |---------------|--------------------|-------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|
-| YOLOv7-T      | ELANNet-Tiny       |  640  |  300  |       |                        |                   |   22.9            |   8.1              |  |
+| YOLOv7-T      | ELANNet-Tiny       |  640  |  300  |       |         38.0           |       56.8        |   22.6            |   7.9              | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov7_t_coco.pth) |
 | YOLOv7-L      | ELANNet-Large      |  640  |  300  |       |                        |                   |   144.6           |   44.0             |  |
 
 - *All models are trained with ImageNet pretrained weight (IP). All FLOPs are measured with a 640x640 image size on COCO val2017. The FPS is measured with batch size 1 on 3090 GPU from the model inference to the NMS operation.*

+ 1 - 1
train.sh

@@ -3,7 +3,7 @@ python train.py \
         --cuda \
         -d coco \
         --root /mnt/share/ssd2/dataset/ \
-        -m yolov5_n \
+        -m yolov7_l \
         -bs 16 \
         -size 640 \
         --wp_epoch 1 \