|
|
@@ -1,53 +1,55 @@
|
|
|
-# YOLOv4:
|
|
|
-
|
|
|
-| Model | Backbone | Batch | Scale | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
-|-------------|-----------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|
|
|
|
-| YOLOv4-Tiny | CSPDarkNet-Tiny | 1xb16 | 640 | 31.0 | 49.1 | 8.1 | 2.9 | [ckpt](https://github.com/yjh0410/RT-ODLab/releases/download/yolo_tutorial_ckpt/yolov4_t_coco.pth) |
|
|
|
-| YOLOv4 | CSPDarkNet-53 | 1xb16 | 640 | 46.6 | 65.8 | 162.7 | 61.5 | [ckpt](https://github.com/yjh0410/RT-ODLab/releases/download/yolo_tutorial_ckpt/yolov4_coco.pth) |
|
|
|
-
|
|
|
-- For training, we train YOLOv4 and YOLOv4-Tiny with 250 epochs on COCO.
|
|
|
-- For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation, following the setting of [YOLOv5](https://github.com/ultralytics/yolov5).
|
|
|
-- For optimizer, we use SGD with momentum 0.937, weight decay 0.0005 and base lr 0.01.
|
|
|
-- For learning rate scheduler, we use linear decay scheduler.
|
|
|
-- For YOLOv4's structure, we use decoupled head, following the setting of [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX).
|
|
|
-
|
|
|
-## Train YOLOv4
|
|
|
+# YOLOX2:
|
|
|
+
|
|
|
+| Model | Batch | Scale | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
+|----------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|
|
|
|
+| YOLOX2-N | 8xb16 | 640 | | | | | |
|
|
|
+| YOLOX2-S | 8xb16 | 640 | | | | | |
|
|
|
+| YOLOX2-M | 8xb16 | 640 | | | | | |
|
|
|
+| YOLOX2-L | 8xb16 | 640 | | | | | |
|
|
|
+| YOLOX2-X | 8xb16 | 640 | | | | | |
|
|
|
+
|
|
|
+- For training, we train YOLOX2 series with 300 epochs on COCO.
|
|
|
+- For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation.
|
|
|
+- For optimizer, we use AdamW with weight decay 0.05 and base per image lr 0.001 / 64,.
|
|
|
+- For learning rate scheduler, we use Linear decay scheduler.
|
|
|
+
|
|
|
+## Train YOLOX2
|
|
|
### Single GPU
|
|
|
-Taking training YOLOv4 on COCO as the example,
|
|
|
+Taking training YOLOX2-S on COCO as the example,
|
|
|
```Shell
|
|
|
-python train.py --cuda -d coco --root path/to/coco -m yolov4 -bs 16 -size 640 --wp_epoch 3 --max_epoch 300 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --multi_scale
|
|
|
+python train.py --cuda -d coco --root path/to/coco -m yolox2_s -bs 16 -size 640 --wp_epoch 3 --max_epoch 300 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --multi_scale
|
|
|
```
|
|
|
|
|
|
### Multi GPU
|
|
|
-Taking training YOLOv4 on COCO as the example,
|
|
|
+Taking training YOLOX2-S on COCO as the example,
|
|
|
```Shell
|
|
|
-python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root /data/datasets/ -m yolov4 -bs 128 -size 640 --wp_epoch 3 --max_epoch 300 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --sybn --multi_scale --save_folder weights/
|
|
|
+python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root /data/datasets/ -m yolox2_s -bs 128 -size 640 --wp_epoch 3 --max_epoch 300 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --sybn --multi_scale --save_folder weights/
|
|
|
```
|
|
|
|
|
|
-## Test YOLOv4
|
|
|
-Taking testing YOLOv4 on COCO-val as the example,
|
|
|
+## Test YOLOX2
|
|
|
+Taking testing YOLOX2-S on COCO-val as the example,
|
|
|
```Shell
|
|
|
-python test.py --cuda -d coco --root path/to/coco -m yolov4 --weight path/to/yolov4.pth -size 640 -vt 0.4 --show
|
|
|
+python test.py --cuda -d coco --root path/to/coco -m yolox2_s --weight path/to/yolox2_s.pth -size 640 -vt 0.4 --show
|
|
|
```
|
|
|
|
|
|
-## Evaluate YOLOv4
|
|
|
-Taking evaluating YOLOv4 on COCO-val as the example,
|
|
|
+## Evaluate YOLOX2
|
|
|
+Taking evaluating YOLOX2-S on COCO-val as the example,
|
|
|
```Shell
|
|
|
-python eval.py --cuda -d coco-val --root path/to/coco -m yolov4 --weight path/to/yolov4.pth
|
|
|
+python eval.py --cuda -d coco-val --root path/to/coco -m yolox2_s --weight path/to/yolox2_s.pth
|
|
|
```
|
|
|
|
|
|
## Demo
|
|
|
### Detect with Image
|
|
|
```Shell
|
|
|
-python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov4 --weight path/to/weight -size 640 -vt 0.4 --show
|
|
|
+python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolox2_s --weight path/to/weight -size 640 -vt 0.4 --show
|
|
|
```
|
|
|
|
|
|
### Detect with Video
|
|
|
```Shell
|
|
|
-python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov4 --weight path/to/weight -size 640 -vt 0.4 --show --gif
|
|
|
+python demo.py --mode video --path_to_vid path/to/video --cuda -m yolox2_s --weight path/to/weight -size 640 -vt 0.4 --show --gif
|
|
|
```
|
|
|
|
|
|
### Detect with Camera
|
|
|
```Shell
|
|
|
-python demo.py --mode camera --cuda -m yolov4 --weight path/to/weight -size 640 -vt 0.4 --show --gif
|
|
|
-```
|
|
|
+python demo.py --mode camera --cuda -m yolox2_s --weight path/to/weight -size 640 -vt 0.4 --show --gif
|
|
|
+```
|