|
|
@@ -1,405 +0,0 @@
|
|
|
-import math
|
|
|
-import torch
|
|
|
-import torch.nn as nn
|
|
|
-import torch.nn.functional as F
|
|
|
-
|
|
|
-try:
|
|
|
- from .basic_modules.basic import LayerNorm2D
|
|
|
- from .basic_modules.transformer import GlobalDecoder
|
|
|
-except:
|
|
|
- from basic_modules.basic import LayerNorm2D
|
|
|
- from basic_modules.transformer import GlobalDecoder
|
|
|
-
|
|
|
-
|
|
|
-def build_transformer(cfg, return_intermediate=False):
|
|
|
- if cfg['transformer'] == 'plain_detr_transformer':
|
|
|
- return PlainDETRTransformer(d_model = cfg['hidden_dim'],
|
|
|
- num_heads = cfg['de_num_heads'],
|
|
|
- ffn_dim = cfg['de_ffn_dim'],
|
|
|
- dropout = cfg['de_dropout'],
|
|
|
- act_type = cfg['de_act'],
|
|
|
- pre_norm = cfg['de_pre_norm'],
|
|
|
- rpe_hidden_dim = cfg['rpe_hidden_dim'],
|
|
|
- feature_stride = cfg['out_stride'],
|
|
|
- num_layers = cfg['de_num_layers'],
|
|
|
- return_intermediate = return_intermediate,
|
|
|
- use_checkpoint = cfg['use_checkpoint'],
|
|
|
- num_queries_one2one = cfg['num_queries_one2one'],
|
|
|
- num_queries_one2many = cfg['num_queries_one2many'],
|
|
|
- proposal_feature_levels = cfg['proposal_feature_levels'],
|
|
|
- proposal_in_stride = cfg['out_stride'],
|
|
|
- proposal_tgt_strides = cfg['proposal_tgt_strides'],
|
|
|
- )
|
|
|
-
|
|
|
-
|
|
|
-# ----------------- Dencoder for Detection task -----------------
|
|
|
-## PlainDETR's Transformer for Detection task
|
|
|
-class PlainDETRTransformer(nn.Module):
|
|
|
- def __init__(self,
|
|
|
- # Decoder layer params
|
|
|
- d_model :int = 256,
|
|
|
- num_heads :int = 8,
|
|
|
- ffn_dim :int = 1024,
|
|
|
- dropout :float = 0.1,
|
|
|
- act_type :str = "relu",
|
|
|
- pre_norm :bool = False,
|
|
|
- rpe_hidden_dim :int = 512,
|
|
|
- feature_stride :int = 16,
|
|
|
- num_layers :int = 6,
|
|
|
- # Decoder params
|
|
|
- return_intermediate :bool = False,
|
|
|
- use_checkpoint :bool = False,
|
|
|
- num_queries_one2one :int = 300,
|
|
|
- num_queries_one2many :int = 1500,
|
|
|
- proposal_feature_levels :int = 3,
|
|
|
- proposal_in_stride :int = 16,
|
|
|
- proposal_tgt_strides :int = [8, 16, 32],
|
|
|
- ):
|
|
|
- super().__init__()
|
|
|
- # ------------ Basic setting ------------
|
|
|
- ## Model
|
|
|
- self.d_model = d_model
|
|
|
- self.num_heads = num_heads
|
|
|
- self.rpe_hidden_dim = rpe_hidden_dim
|
|
|
- self.ffn_dim = ffn_dim
|
|
|
- self.act_type = act_type
|
|
|
- self.num_layers = num_layers
|
|
|
- self.return_intermediate = return_intermediate
|
|
|
- ## Trick
|
|
|
- self.use_checkpoint = use_checkpoint
|
|
|
- self.num_queries_one2one = num_queries_one2one
|
|
|
- self.num_queries_one2many = num_queries_one2many
|
|
|
- self.proposal_feature_levels = proposal_feature_levels
|
|
|
- self.proposal_tgt_strides = proposal_tgt_strides
|
|
|
- self.proposal_in_stride = proposal_in_stride
|
|
|
- self.proposal_min_size = 50
|
|
|
-
|
|
|
- # --------------- Network setting ---------------
|
|
|
- ## Global Decoder
|
|
|
- self.decoder = GlobalDecoder(d_model, num_heads, ffn_dim, dropout, act_type, pre_norm,
|
|
|
- rpe_hidden_dim, feature_stride, num_layers, return_intermediate,
|
|
|
- use_checkpoint,)
|
|
|
-
|
|
|
- ## Two stage
|
|
|
- self.enc_output = nn.Linear(d_model, d_model)
|
|
|
- self.enc_output_norm = nn.LayerNorm(d_model)
|
|
|
- self.pos_trans = nn.Linear(d_model * 2, d_model * 2)
|
|
|
- self.pos_trans_norm = nn.LayerNorm(d_model * 2)
|
|
|
-
|
|
|
- ## Expand layers
|
|
|
- if proposal_feature_levels > 1:
|
|
|
- assert len(proposal_tgt_strides) == proposal_feature_levels
|
|
|
-
|
|
|
- self.enc_output_proj = nn.ModuleList([])
|
|
|
- for stride in proposal_tgt_strides:
|
|
|
- if stride == proposal_in_stride:
|
|
|
- self.enc_output_proj.append(nn.Identity())
|
|
|
- elif stride > proposal_in_stride:
|
|
|
- scale = int(math.log2(stride / proposal_in_stride))
|
|
|
- layers = []
|
|
|
- for _ in range(scale - 1):
|
|
|
- layers += [
|
|
|
- nn.Conv2d(d_model, d_model, kernel_size=2, stride=2),
|
|
|
- LayerNorm2D(d_model),
|
|
|
- nn.GELU()
|
|
|
- ]
|
|
|
- layers.append(nn.Conv2d(d_model, d_model, kernel_size=2, stride=2))
|
|
|
- self.enc_output_proj.append(nn.Sequential(*layers))
|
|
|
- else:
|
|
|
- scale = int(math.log2(proposal_in_stride / stride))
|
|
|
- layers = []
|
|
|
- for _ in range(scale - 1):
|
|
|
- layers += [
|
|
|
- nn.ConvTranspose2d(d_model, d_model, kernel_size=2, stride=2),
|
|
|
- LayerNorm2D(d_model),
|
|
|
- nn.GELU()
|
|
|
- ]
|
|
|
- layers.append(nn.ConvTranspose2d(d_model, d_model, kernel_size=2, stride=2))
|
|
|
- self.enc_output_proj.append(nn.Sequential(*layers))
|
|
|
-
|
|
|
- self._reset_parameters()
|
|
|
-
|
|
|
- def _reset_parameters(self):
|
|
|
- for p in self.parameters():
|
|
|
- if p.dim() > 1:
|
|
|
- nn.init.xavier_uniform_(p)
|
|
|
-
|
|
|
- if hasattr(self.decoder, '_reset_parameters'):
|
|
|
- print('decoder re-init')
|
|
|
- self.decoder._reset_parameters()
|
|
|
-
|
|
|
- def get_proposal_pos_embed(self, proposals):
|
|
|
- num_pos_feats = self.d_model // 2
|
|
|
- temperature = 10000
|
|
|
- scale = 2 * torch.pi
|
|
|
-
|
|
|
- dim_t = torch.arange(
|
|
|
- num_pos_feats, dtype=torch.float32, device=proposals.device
|
|
|
- )
|
|
|
- dim_t = temperature ** (2 * (dim_t // 2) / num_pos_feats)
|
|
|
- # N, L, 4
|
|
|
- proposals = proposals * scale
|
|
|
- # N, L, 4, 128
|
|
|
- pos = proposals[:, :, :, None] / dim_t
|
|
|
- # N, L, 4, 64, 2
|
|
|
- pos = torch.stack(
|
|
|
- (pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), dim=4
|
|
|
- ).flatten(2)
|
|
|
-
|
|
|
- return pos
|
|
|
-
|
|
|
- def get_valid_ratio(self, mask):
|
|
|
- _, H, W = mask.shape
|
|
|
- valid_H = torch.sum(~mask[:, :, 0], 1)
|
|
|
- valid_W = torch.sum(~mask[:, 0, :], 1)
|
|
|
- valid_ratio_h = valid_H.float() / H
|
|
|
- valid_ratio_w = valid_W.float() / W
|
|
|
- valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
|
|
|
-
|
|
|
- return valid_ratio
|
|
|
-
|
|
|
- def expand_encoder_output(self, memory, memory_padding_mask, spatial_shapes):
|
|
|
- assert spatial_shapes.size(0) == 1, f'Get encoder output of shape {spatial_shapes}, not sure how to expand'
|
|
|
-
|
|
|
- bs, _, c = memory.shape
|
|
|
- h, w = spatial_shapes[0]
|
|
|
-
|
|
|
- _out_memory = memory.view(bs, h, w, c).permute(0, 3, 1, 2)
|
|
|
- _out_memory_padding_mask = memory_padding_mask.view(bs, h, w)
|
|
|
-
|
|
|
- out_memory, out_memory_padding_mask, out_spatial_shapes = [], [], []
|
|
|
- for i in range(self.proposal_feature_levels):
|
|
|
- mem = self.enc_output_proj[i](_out_memory)
|
|
|
- mask = F.interpolate(
|
|
|
- _out_memory_padding_mask[None].float(), size=mem.shape[-2:]
|
|
|
- ).to(torch.bool)
|
|
|
-
|
|
|
- out_memory.append(mem)
|
|
|
- out_memory_padding_mask.append(mask.squeeze(0))
|
|
|
- out_spatial_shapes.append(mem.shape[-2:])
|
|
|
-
|
|
|
- out_memory = torch.cat([mem.flatten(2).transpose(1, 2) for mem in out_memory], dim=1)
|
|
|
- out_memory_padding_mask = torch.cat([mask.flatten(1) for mask in out_memory_padding_mask], dim=1)
|
|
|
- out_spatial_shapes = torch.as_tensor(out_spatial_shapes, dtype=torch.long, device=out_memory.device)
|
|
|
-
|
|
|
- return out_memory, out_memory_padding_mask, out_spatial_shapes
|
|
|
-
|
|
|
- def gen_encoder_output_proposals(self, memory, memory_padding_mask, spatial_shapes):
|
|
|
- if self.proposal_feature_levels > 1:
|
|
|
- memory, memory_padding_mask, spatial_shapes = self.expand_encoder_output(
|
|
|
- memory, memory_padding_mask, spatial_shapes
|
|
|
- )
|
|
|
- N_, S_, C_ = memory.shape
|
|
|
- # base_scale = 4.0
|
|
|
- proposals = []
|
|
|
- _cur = 0
|
|
|
- for lvl, (H_, W_) in enumerate(spatial_shapes):
|
|
|
- stride = self.proposal_tgt_strides[lvl]
|
|
|
-
|
|
|
- grid_y, grid_x = torch.meshgrid(
|
|
|
- torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device),
|
|
|
- torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device),
|
|
|
- )
|
|
|
- grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)
|
|
|
- grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) * stride
|
|
|
- wh = torch.ones_like(grid) * self.proposal_min_size * (2.0 ** lvl)
|
|
|
- proposal = torch.cat((grid, wh), -1).view(N_, -1, 4)
|
|
|
- proposals.append(proposal)
|
|
|
- _cur += H_ * W_
|
|
|
- output_proposals = torch.cat(proposals, 1)
|
|
|
-
|
|
|
- H_, W_ = spatial_shapes[0]
|
|
|
- stride = self.proposal_tgt_strides[0]
|
|
|
- mask_flatten_ = memory_padding_mask[:, :H_*W_].view(N_, H_, W_, 1)
|
|
|
- valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1, keepdim=True) * stride
|
|
|
- valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1, keepdim=True) * stride
|
|
|
- img_size = torch.cat([valid_W, valid_H, valid_W, valid_H], dim=-1)
|
|
|
- img_size = img_size.unsqueeze(1) # [BS, 1, 4]
|
|
|
-
|
|
|
- output_proposals_valid = (
|
|
|
- (output_proposals > 0.01 * img_size) & (output_proposals < 0.99 * img_size)
|
|
|
- ).all(-1, keepdim=True)
|
|
|
- output_proposals = output_proposals.masked_fill(
|
|
|
- memory_padding_mask.unsqueeze(-1).repeat(1, 1, 1),
|
|
|
- max(H_, W_) * stride,
|
|
|
- )
|
|
|
- output_proposals = output_proposals.masked_fill(
|
|
|
- ~output_proposals_valid,
|
|
|
- max(H_, W_) * stride,
|
|
|
- )
|
|
|
-
|
|
|
- output_memory = memory
|
|
|
- output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0))
|
|
|
- output_memory = output_memory.masked_fill(~output_proposals_valid, float(0))
|
|
|
- output_memory = self.enc_output_norm(self.enc_output(output_memory))
|
|
|
-
|
|
|
- max_shape = (valid_H[:, None, :], valid_W[:, None, :])
|
|
|
- return output_memory, output_proposals, max_shape
|
|
|
-
|
|
|
- def get_reference_points(self, memory, mask_flatten, spatial_shapes):
|
|
|
- output_memory, output_proposals, max_shape = self.gen_encoder_output_proposals(
|
|
|
- memory, mask_flatten, spatial_shapes
|
|
|
- )
|
|
|
-
|
|
|
- # hack implementation for two-stage Deformable DETR
|
|
|
- enc_outputs_class = self.decoder.class_embed[self.decoder.num_layers](output_memory)
|
|
|
- enc_outputs_delta = self.decoder.bbox_embed[self.decoder.num_layers](output_memory)
|
|
|
- enc_outputs_coord_unact = self.decoder.box_xyxy_to_cxcywh(self.decoder.delta2bbox(
|
|
|
- output_proposals,
|
|
|
- enc_outputs_delta,
|
|
|
- max_shape
|
|
|
- ))
|
|
|
-
|
|
|
- topk = self.two_stage_num_proposals
|
|
|
- topk_proposals = torch.topk(enc_outputs_class.max(-1)[0], topk, dim=1)[1]
|
|
|
- topk_coords_unact = torch.gather(
|
|
|
- enc_outputs_coord_unact, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)
|
|
|
- )
|
|
|
- topk_coords_unact = topk_coords_unact.detach()
|
|
|
- reference_points = topk_coords_unact
|
|
|
-
|
|
|
- return (reference_points, max_shape, enc_outputs_class,
|
|
|
- enc_outputs_coord_unact, enc_outputs_delta, output_proposals)
|
|
|
-
|
|
|
- def forward(self, src, mask, pos_embed, query_embed=None, self_attn_mask=None):
|
|
|
- # Prepare input for encoder
|
|
|
- bs, c, h, w = src.shape
|
|
|
- src_flatten = src.flatten(2).transpose(1, 2)
|
|
|
- mask_flatten = mask.flatten(1)
|
|
|
- pos_embed_flatten = pos_embed.flatten(2).transpose(1, 2)
|
|
|
- spatial_shapes = torch.as_tensor([(h, w)], dtype=torch.long, device=src_flatten.device)
|
|
|
-
|
|
|
- # Prepare input for decoder
|
|
|
- memory = src_flatten
|
|
|
- bs, _, c = memory.shape
|
|
|
-
|
|
|
- # Two stage trick
|
|
|
- if self.training:
|
|
|
- self.two_stage_num_proposals = self.num_queries_one2one + self.num_queries_one2many
|
|
|
- else:
|
|
|
- self.two_stage_num_proposals = self.num_queries_one2one
|
|
|
- (reference_points, max_shape, enc_outputs_class,
|
|
|
- enc_outputs_coord_unact, enc_outputs_delta, output_proposals) \
|
|
|
- = self.get_reference_points(memory, mask_flatten, spatial_shapes)
|
|
|
- init_reference_out = reference_points
|
|
|
- pos_trans_out = torch.zeros((bs, self.two_stage_num_proposals, 2*c), device=init_reference_out.device)
|
|
|
- pos_trans_out = self.pos_trans_norm(self.pos_trans(self.get_proposal_pos_embed(reference_points)))
|
|
|
-
|
|
|
- # Mixed selection trick
|
|
|
- tgt = query_embed.unsqueeze(0).expand(bs, -1, -1)
|
|
|
- query_embed, _ = torch.split(pos_trans_out, c, dim=2)
|
|
|
-
|
|
|
- # Decoder
|
|
|
- hs, inter_references = self.decoder(tgt,
|
|
|
- reference_points,
|
|
|
- memory,
|
|
|
- pos_embed_flatten,
|
|
|
- spatial_shapes,
|
|
|
- query_embed,
|
|
|
- mask_flatten,
|
|
|
- self_attn_mask,
|
|
|
- max_shape
|
|
|
- )
|
|
|
- inter_references_out = inter_references
|
|
|
-
|
|
|
- return (hs,
|
|
|
- init_reference_out,
|
|
|
- inter_references_out,
|
|
|
- enc_outputs_class,
|
|
|
- enc_outputs_coord_unact,
|
|
|
- enc_outputs_delta,
|
|
|
- output_proposals,
|
|
|
- max_shape
|
|
|
- )
|
|
|
-
|
|
|
-
|
|
|
-# ----------------- Dencoder for Segmentation task -----------------
|
|
|
-## PlainDETR's Transformer for Segmentation task
|
|
|
-class SegTransformerDecoder(nn.Module):
|
|
|
- def __init__(self, ):
|
|
|
- super().__init__()
|
|
|
- # TODO: design seg-decoder
|
|
|
-
|
|
|
- def forward(self, x):
|
|
|
- return
|
|
|
-
|
|
|
-
|
|
|
-# ----------------- Dencoder for Pose estimation task -----------------
|
|
|
-## PlainDETR's Transformer for Pose estimation task
|
|
|
-class PosTransformerDecoder(nn.Module):
|
|
|
- def __init__(self, ):
|
|
|
- super().__init__()
|
|
|
- # TODO: design seg-decoder
|
|
|
-
|
|
|
- def forward(self, x):
|
|
|
- return
|
|
|
-
|
|
|
-
|
|
|
-if __name__ == '__main__':
|
|
|
- import time
|
|
|
- from thop import profile
|
|
|
- from basic_modules.basic import MLP
|
|
|
- from basic_modules.transformer import get_clones
|
|
|
-
|
|
|
- cfg = {
|
|
|
- 'out_stride': 16,
|
|
|
- 'hidden_dim': 256,
|
|
|
- # Transformer Decoder
|
|
|
- 'transformer': 'plain_detr_transformer',
|
|
|
- 'de_num_heads': 8,
|
|
|
- 'de_num_layers': 6,
|
|
|
- 'de_ffn_dim': 1024,
|
|
|
- 'de_dropout': 0.0,
|
|
|
- 'de_act': 'gelu',
|
|
|
- 'de_pre_norm': True,
|
|
|
- 'rpe_hidden_dim': 512,
|
|
|
- 'use_checkpoint': False,
|
|
|
- 'proposal_feature_levels': 3,
|
|
|
- 'proposal_tgt_strides': [8, 16, 32],
|
|
|
- 'num_queries_one2one': 300,
|
|
|
- 'num_queries_one2many': 100,
|
|
|
- }
|
|
|
- feat = torch.randn(1, cfg['hidden_dim'], 40, 40)
|
|
|
- mask = torch.zeros(1, 40, 40)
|
|
|
- pos_embed = torch.randn(1, cfg['hidden_dim'], 40, 40)
|
|
|
- query_embed = torch.randn(cfg['num_queries_one2one'] + cfg['num_queries_one2many'], cfg['hidden_dim'])
|
|
|
-
|
|
|
- model = build_transformer(cfg, True)
|
|
|
-
|
|
|
- class_embed = nn.Linear(cfg['hidden_dim'], 80)
|
|
|
- bbox_embed = MLP(cfg['hidden_dim'], cfg['hidden_dim'], 4, 3)
|
|
|
- class_embed = get_clones(class_embed, cfg['de_num_layers'] + 1)
|
|
|
- bbox_embed = get_clones(bbox_embed, cfg['de_num_layers'] + 1)
|
|
|
-
|
|
|
- model.decoder.bbox_embed = bbox_embed
|
|
|
- model.decoder.class_embed = class_embed
|
|
|
-
|
|
|
- model.train()
|
|
|
- t0 = time.time()
|
|
|
- outputs = model(feat, mask, pos_embed, query_embed)
|
|
|
- (hs,
|
|
|
- init_reference_out,
|
|
|
- inter_references_out,
|
|
|
- enc_outputs_class,
|
|
|
- enc_outputs_coord_unact,
|
|
|
- enc_outputs_delta,
|
|
|
- output_proposals,
|
|
|
- max_shape
|
|
|
- ) = outputs
|
|
|
- t1 = time.time()
|
|
|
- print('Time: ', t1 - t0)
|
|
|
- print(hs.shape)
|
|
|
- print(init_reference_out.shape)
|
|
|
- print(inter_references_out.shape)
|
|
|
- print(enc_outputs_class.shape)
|
|
|
- print(enc_outputs_coord_unact.shape)
|
|
|
- print(enc_outputs_delta.shape)
|
|
|
- print(output_proposals.shape)
|
|
|
-
|
|
|
- print('==============================')
|
|
|
- model.eval()
|
|
|
- query_embed = torch.randn(cfg['num_queries_one2one'], cfg['hidden_dim'])
|
|
|
- flops, params = profile(model, inputs=(feat, mask, pos_embed, query_embed, ), verbose=False)
|
|
|
- print('==============================')
|
|
|
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
|
|
|
- print('Params : {:.2f} M'.format(params / 1e6))
|