|
|
@@ -1,384 +0,0 @@
|
|
|
-import copy
|
|
|
-import torch
|
|
|
-import torch.nn as nn
|
|
|
-from typing import Optional
|
|
|
-from torch import Tensor
|
|
|
-
|
|
|
-
|
|
|
-# ---------------------------- Basic functions ----------------------------
|
|
|
-class SiLU(nn.Module):
|
|
|
- """export-friendly version of nn.SiLU()"""
|
|
|
-
|
|
|
- @staticmethod
|
|
|
- def forward(x):
|
|
|
- return x * torch.sigmoid(x)
|
|
|
-
|
|
|
-def get_conv2d(c1, c2, k, p, s, d, g, bias=False):
|
|
|
- conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias)
|
|
|
-
|
|
|
- return conv
|
|
|
-
|
|
|
-def get_activation(act_type=None):
|
|
|
- if act_type == 'relu':
|
|
|
- return nn.ReLU(inplace=True)
|
|
|
- elif act_type == 'lrelu':
|
|
|
- return nn.LeakyReLU(0.1, inplace=True)
|
|
|
- elif act_type == 'mish':
|
|
|
- return nn.Mish(inplace=True)
|
|
|
- elif act_type == 'silu':
|
|
|
- return nn.SiLU(inplace=True)
|
|
|
- elif act_type is None:
|
|
|
- return nn.Identity()
|
|
|
-
|
|
|
-def get_norm(norm_type, dim):
|
|
|
- if norm_type == 'BN':
|
|
|
- return nn.BatchNorm2d(dim)
|
|
|
- elif norm_type == 'GN':
|
|
|
- return nn.GroupNorm(num_groups=32, num_channels=dim)
|
|
|
-
|
|
|
-def get_clones(module, N):
|
|
|
- return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
|
|
-
|
|
|
-
|
|
|
-# ---------------------------- 2D CNN ----------------------------
|
|
|
-class Conv(nn.Module):
|
|
|
- def __init__(self,
|
|
|
- c1, # in channels
|
|
|
- c2, # out channels
|
|
|
- k=1, # kernel size
|
|
|
- p=0, # padding
|
|
|
- s=1, # padding
|
|
|
- d=1, # dilation
|
|
|
- act_type='lrelu', # activation
|
|
|
- norm_type='BN', # normalization
|
|
|
- depthwise=False):
|
|
|
- super(Conv, self).__init__()
|
|
|
- convs = []
|
|
|
- add_bias = False if norm_type else True
|
|
|
- p = p if d == 1 else d
|
|
|
- if depthwise:
|
|
|
- convs.append(get_conv2d(c1, c1, k=k, p=p, s=s, d=d, g=c1, bias=add_bias))
|
|
|
- # depthwise conv
|
|
|
- if norm_type:
|
|
|
- convs.append(get_norm(norm_type, c1))
|
|
|
- if act_type:
|
|
|
- convs.append(get_activation(act_type))
|
|
|
- # pointwise conv
|
|
|
- convs.append(get_conv2d(c1, c2, k=1, p=0, s=1, d=d, g=1, bias=add_bias))
|
|
|
- if norm_type:
|
|
|
- convs.append(get_norm(norm_type, c2))
|
|
|
- if act_type:
|
|
|
- convs.append(get_activation(act_type))
|
|
|
-
|
|
|
- else:
|
|
|
- convs.append(get_conv2d(c1, c2, k=k, p=p, s=s, d=d, g=1, bias=add_bias))
|
|
|
- if norm_type:
|
|
|
- convs.append(get_norm(norm_type, c2))
|
|
|
- if act_type:
|
|
|
- convs.append(get_activation(act_type))
|
|
|
-
|
|
|
- self.convs = nn.Sequential(*convs)
|
|
|
-
|
|
|
-
|
|
|
- def forward(self, x):
|
|
|
- return self.convs(x)
|
|
|
-
|
|
|
-
|
|
|
-# ------------------------------- MLP -------------------------------
|
|
|
-class MLP(nn.Module):
|
|
|
- """ Very simple multi-layer perceptron (also called FFN)"""
|
|
|
-
|
|
|
- def __init__(self, in_dim, hidden_dim, out_dim, num_layers):
|
|
|
- super().__init__()
|
|
|
- self.num_layers = num_layers
|
|
|
- h = [hidden_dim] * (num_layers - 1)
|
|
|
- self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([in_dim] + h, h + [out_dim]))
|
|
|
-
|
|
|
- def forward(self, x):
|
|
|
- for i, layer in enumerate(self.layers):
|
|
|
- x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
|
|
- return x
|
|
|
-
|
|
|
-class FFN(nn.Module):
|
|
|
- def __init__(self, d_model=256, mlp_ratio=4.0, dropout=0., act_type='relu'):
|
|
|
- super().__init__()
|
|
|
- self.fpn_dim = round(d_model * mlp_ratio)
|
|
|
- self.linear1 = nn.Linear(d_model, self.fpn_dim)
|
|
|
- self.activation = get_activation(act_type)
|
|
|
- self.dropout2 = nn.Dropout(dropout)
|
|
|
- self.linear2 = nn.Linear(self.fpn_dim, d_model)
|
|
|
- self.dropout3 = nn.Dropout(dropout)
|
|
|
- self.norm2 = nn.LayerNorm(d_model)
|
|
|
-
|
|
|
- def forward(self, src):
|
|
|
- src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
|
|
|
- src = src + self.dropout3(src2)
|
|
|
- src = self.norm2(src)
|
|
|
- return src
|
|
|
-
|
|
|
-# ---------------------------- Attention ----------------------------
|
|
|
-class MultiHeadAttention(nn.Module):
|
|
|
- def __init__(self, d_model, num_heads, dropout=0.) -> None:
|
|
|
- super().__init__()
|
|
|
- # --------------- Basic parameters ---------------
|
|
|
- self.d_model = d_model
|
|
|
- self.num_heads = num_heads
|
|
|
- self.dropout = dropout
|
|
|
- self.scale = (d_model // num_heads) ** -0.5
|
|
|
-
|
|
|
- # --------------- Network parameters ---------------
|
|
|
- self.q_proj = nn.Linear(d_model, d_model, bias = False) # W_q, W_k, W_v
|
|
|
- self.k_proj = nn.Linear(d_model, d_model, bias = False) # W_q, W_k, W_v
|
|
|
- self.v_proj = nn.Linear(d_model, d_model, bias = False) # W_q, W_k, W_v
|
|
|
-
|
|
|
- self.out_proj = nn.Linear(d_model, d_model)
|
|
|
- self.dropout = nn.Dropout(dropout)
|
|
|
-
|
|
|
-
|
|
|
- def forward(self, query, key, value):
|
|
|
- """
|
|
|
- Inputs:
|
|
|
- query : (Tensor) -> [B, Nq, C]
|
|
|
- key : (Tensor) -> [B, Nk, C]
|
|
|
- value : (Tensor) -> [B, Nk, C]
|
|
|
- """
|
|
|
- bs = query.shape[0]
|
|
|
- Nq = query.shape[1]
|
|
|
- Nk = key.shape[1]
|
|
|
-
|
|
|
- # ----------------- Input proj -----------------
|
|
|
- query = self.q_proj(query)
|
|
|
- key = self.k_proj(key)
|
|
|
- value = self.v_proj(value)
|
|
|
-
|
|
|
- # ----------------- Multi-head Attn -----------------
|
|
|
- ## [B, N, C] -> [B, N, H, C_h] -> [B, H, N, C_h]
|
|
|
- query = query.view(bs, Nq, self.num_heads, self.d_model // self.num_heads)
|
|
|
- query = query.permute(0, 2, 1, 3).contiguous()
|
|
|
- key = key.view(bs, Nk, self.num_heads, self.d_model // self.num_heads)
|
|
|
- key = key.permute(0, 2, 1, 3).contiguous()
|
|
|
- value = value.view(bs, Nk, self.num_heads, self.d_model // self.num_heads)
|
|
|
- value = value.permute(0, 2, 1, 3).contiguous()
|
|
|
- # Attention
|
|
|
- ## [B, H, Nq, C_h] X [B, H, C_h, Nk] = [B, H, Nq, Nk]
|
|
|
- sim_matrix = torch.matmul(query, key.transpose(-1, -2)) * self.scale
|
|
|
- sim_matrix = torch.softmax(sim_matrix, dim=-1)
|
|
|
-
|
|
|
- # ----------------- Output -----------------
|
|
|
- out = torch.matmul(sim_matrix, value) # [B, H, Nq, C_h]
|
|
|
- out = out.permute(0, 2, 1, 3).contiguous().view(bs, Nq, -1)
|
|
|
- out = self.out_proj(out)
|
|
|
-
|
|
|
- return out
|
|
|
-
|
|
|
-
|
|
|
-# ---------------------------- Modified YOLOv7's Modules ----------------------------
|
|
|
-class ELANBlock(nn.Module):
|
|
|
- def __init__(self, in_dim, out_dim, expand_ratio=0.5, depth=1.0, act_type='silu', norm_type='BN', depthwise=False):
|
|
|
- super(ELANBlock, self).__init__()
|
|
|
- if isinstance(expand_ratio, float):
|
|
|
- inter_dim = int(in_dim * expand_ratio)
|
|
|
- inter_dim2 = inter_dim
|
|
|
- elif isinstance(expand_ratio, list):
|
|
|
- assert len(expand_ratio) == 2
|
|
|
- e1, e2 = expand_ratio
|
|
|
- inter_dim = int(in_dim * e1)
|
|
|
- inter_dim2 = int(inter_dim * e2)
|
|
|
- # branch-1
|
|
|
- self.cv1 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type)
|
|
|
- # branch-2
|
|
|
- self.cv2 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type)
|
|
|
- # branch-3
|
|
|
- for idx in range(round(3*depth)):
|
|
|
- if idx == 0:
|
|
|
- cv3 = [Conv(inter_dim, inter_dim2, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)]
|
|
|
- else:
|
|
|
- cv3.append(Conv(inter_dim2, inter_dim2, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise))
|
|
|
- self.cv3 = nn.Sequential(*cv3)
|
|
|
- # branch-4
|
|
|
- self.cv4 = nn.Sequential(*[
|
|
|
- Conv(inter_dim2, inter_dim2, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
|
|
|
- for _ in range(round(3*depth))
|
|
|
- ])
|
|
|
- # output
|
|
|
- self.out = Conv(inter_dim*2 + inter_dim2*2, out_dim, k=1, act_type=act_type, norm_type=norm_type)
|
|
|
-
|
|
|
-
|
|
|
- def forward(self, x):
|
|
|
- """
|
|
|
- Input:
|
|
|
- x: [B, C_in, H, W]
|
|
|
- Output:
|
|
|
- out: [B, C_out, H, W]
|
|
|
- """
|
|
|
- x1 = self.cv1(x)
|
|
|
- x2 = self.cv2(x)
|
|
|
- x3 = self.cv3(x2)
|
|
|
- x4 = self.cv4(x3)
|
|
|
-
|
|
|
- # [B, C, H, W] -> [B, 2C, H, W]
|
|
|
- out = self.out(torch.cat([x1, x2, x3, x4], dim=1))
|
|
|
-
|
|
|
- return out
|
|
|
-
|
|
|
-class ELANBlockFPN(nn.Module):
|
|
|
- def __init__(self, in_dim, out_dim, expand_ratio :float=0.5, branch_depth :int=1, shortcut=False, act_type='silu', norm_type='BN', depthwise=False):
|
|
|
- super().__init__()
|
|
|
- # ----------- Basic Parameters -----------
|
|
|
- self.in_dim = in_dim
|
|
|
- self.out_dim = out_dim
|
|
|
- self.inter_dim1 = round(out_dim * expand_ratio)
|
|
|
- self.inter_dim2 = round(self.inter_dim1 * expand_ratio)
|
|
|
- self.expand_ratio = expand_ratio
|
|
|
- self.branch_depth = branch_depth
|
|
|
- self.shortcut = shortcut
|
|
|
- # ----------- Network Parameters -----------
|
|
|
- ## branch-1
|
|
|
- self.cv1 = Conv(in_dim, self.inter_dim1, k=1, act_type=act_type, norm_type=norm_type)
|
|
|
- ## branch-2
|
|
|
- self.cv2 = Conv(in_dim, self.inter_dim1, k=1, act_type=act_type, norm_type=norm_type)
|
|
|
- ## branch-3
|
|
|
- self.cv3 = []
|
|
|
- for i in range(branch_depth):
|
|
|
- if i == 0:
|
|
|
- self.cv3.append(Conv(self.inter_dim1, self.inter_dim2, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise))
|
|
|
- else:
|
|
|
- self.cv3.append(Conv(self.inter_dim2, self.inter_dim2, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise))
|
|
|
- self.cv3 = nn.Sequential(*self.cv3)
|
|
|
- ## branch-4
|
|
|
- self.cv4 = nn.Sequential(*[
|
|
|
- Conv(self.inter_dim2, self.inter_dim2, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
|
|
|
- for _ in range(branch_depth)
|
|
|
- ])
|
|
|
- ## branch-5
|
|
|
- self.cv5 = nn.Sequential(*[
|
|
|
- Conv(self.inter_dim2, self.inter_dim2, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
|
|
|
- for _ in range(branch_depth)
|
|
|
- ])
|
|
|
- ## branch-6
|
|
|
- self.cv6 = nn.Sequential(*[
|
|
|
- Conv(self.inter_dim2, self.inter_dim2, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
|
|
|
- for _ in range(branch_depth)
|
|
|
- ])
|
|
|
- ## output proj
|
|
|
- self.out = Conv(self.inter_dim1*2 + self.inter_dim2*4, out_dim, k=1, act_type=act_type, norm_type=norm_type)
|
|
|
-
|
|
|
- def forward(self, x):
|
|
|
- x1 = self.cv1(x)
|
|
|
- x2 = self.cv2(x)
|
|
|
- x3 = self.cv3(x2)
|
|
|
- x4 = self.cv4(x3)
|
|
|
- x5 = self.cv5(x4)
|
|
|
- x6 = self.cv6(x5)
|
|
|
-
|
|
|
- # [B, C, H, W] -> [B, 2C, H, W]
|
|
|
- out = self.out(torch.cat([x1, x2, x3, x4, x5, x6], dim=1))
|
|
|
-
|
|
|
- return out
|
|
|
-
|
|
|
-class DSBlock(nn.Module):
|
|
|
- def __init__(self, in_dim, out_dim, act_type='silu', norm_type='BN', depthwise=False):
|
|
|
- super().__init__()
|
|
|
- inter_dim = out_dim // 2
|
|
|
- self.mp = nn.MaxPool2d((2, 2), 2)
|
|
|
- self.cv1 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type)
|
|
|
- self.cv2 = nn.Sequential(
|
|
|
- Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type),
|
|
|
- Conv(inter_dim, inter_dim, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
|
|
|
- )
|
|
|
-
|
|
|
- def forward(self, x):
|
|
|
- x1 = self.cv1(self.mp(x))
|
|
|
- x2 = self.cv2(x)
|
|
|
- out = torch.cat([x1, x2], dim=1)
|
|
|
-
|
|
|
- return out
|
|
|
-
|
|
|
-
|
|
|
-# ---------------------------- Transformer Modules ----------------------------
|
|
|
-class TREncoderLayer(nn.Module):
|
|
|
- def __init__(self,
|
|
|
- d_model,
|
|
|
- num_heads,
|
|
|
- mlp_ratio=4.0,
|
|
|
- dropout=0.1,
|
|
|
- act_type="relu",
|
|
|
- ):
|
|
|
- super().__init__()
|
|
|
- # Multi-head Self-Attn
|
|
|
- self.self_attn = MultiHeadAttention(d_model, num_heads, dropout)
|
|
|
- self.dropout = nn.Dropout(dropout)
|
|
|
- self.norm = nn.LayerNorm(d_model)
|
|
|
-
|
|
|
- # Feedforwaed Network
|
|
|
- self.ffn = FFN(d_model, mlp_ratio, dropout, act_type)
|
|
|
-
|
|
|
- def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
|
|
- return tensor if pos is None else tensor + pos
|
|
|
-
|
|
|
- def forward(self, src, pos):
|
|
|
- """
|
|
|
- Input:
|
|
|
- src: [torch.Tensor] -> [B, N, C]
|
|
|
- pos: [torch.Tensor] -> [B, N, C]
|
|
|
- Output:
|
|
|
- src: [torch.Tensor] -> [B, N, C]
|
|
|
- """
|
|
|
- q = k = self.with_pos_embed(src, pos)
|
|
|
-
|
|
|
- # self-attn
|
|
|
- src2 = self.self_attn(q, k, value=src)
|
|
|
-
|
|
|
- # reshape: [B, N, C] -> [B, C, H, W]
|
|
|
- src = src + self.dropout(src2)
|
|
|
- src = self.norm(src)
|
|
|
-
|
|
|
- # ffpn
|
|
|
- src = self.ffn(src)
|
|
|
-
|
|
|
- return src
|
|
|
-
|
|
|
-class TRDecoderLayer(nn.Module):
|
|
|
- def __init__(self,
|
|
|
- d_model,
|
|
|
- num_heads,
|
|
|
- mlp_ratio=4.0,
|
|
|
- dropout=0.1,
|
|
|
- act_type="relu"):
|
|
|
- super().__init__()
|
|
|
- self.d_model = d_model
|
|
|
- # self attention
|
|
|
- self.self_attn = MultiHeadAttention(d_model, num_heads, dropout)
|
|
|
- self.dropout1 = nn.Dropout(dropout)
|
|
|
- self.norm1 = nn.LayerNorm(d_model)
|
|
|
- # cross attention
|
|
|
- self.cross_attn = MultiHeadAttention(d_model, num_heads, dropout)
|
|
|
- self.dropout2 = nn.Dropout(dropout)
|
|
|
- self.norm2 = nn.LayerNorm(d_model)
|
|
|
- # FFN
|
|
|
- self.ffn = FFN(d_model, mlp_ratio, dropout, act_type)
|
|
|
-
|
|
|
- def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
|
|
- return tensor if pos is None else tensor + pos
|
|
|
-
|
|
|
- def forward(self, tgt, query_pos, memory, memory_pos):
|
|
|
- # self attention
|
|
|
- q1 = k1 = self.with_pos_embed(tgt, query_pos)
|
|
|
- v1 = tgt
|
|
|
- tgt2 = self.self_attn(q1, k1, v1)
|
|
|
- tgt = tgt + self.dropout1(tgt2)
|
|
|
- tgt = self.norm1(tgt)
|
|
|
-
|
|
|
- # cross attention
|
|
|
- q2 = self.with_pos_embed(tgt, query_pos)
|
|
|
- k2 = self.with_pos_embed(memory, memory_pos)
|
|
|
- v2 = memory
|
|
|
- tgt2 = self.cross_attn(q2, k2, v2)
|
|
|
- tgt = tgt + self.dropout2(tgt2)
|
|
|
- tgt = self.norm2(tgt)
|
|
|
-
|
|
|
- # ffn
|
|
|
- tgt = self.ffn(tgt)
|
|
|
-
|
|
|
- return tgt
|
|
|
-
|