|
|
@@ -7,7 +7,8 @@ import torch.nn.functional as F
|
|
|
from .yolovx_backbone import build_backbone
|
|
|
from .yolovx_neck import build_neck
|
|
|
from .yolovx_pafpn import build_fpn
|
|
|
-from .yolovx_head import build_head
|
|
|
+from .yolovx_head import build_det_head
|
|
|
+from .yolovx_pred import build_pred_layer
|
|
|
|
|
|
# --------------- External components ---------------
|
|
|
from utils.misc import multiclass_nms
|
|
|
@@ -50,43 +51,13 @@ class YOLOvx(nn.Module):
|
|
|
self.fpn_dims = self.fpn.out_dim
|
|
|
|
|
|
## ----------- Heads -----------
|
|
|
- self.heads = nn.ModuleList(
|
|
|
- [build_head(cfg, fpn_dim, self.head_dim, num_classes)
|
|
|
- for fpn_dim in self.fpn_dims
|
|
|
- ])
|
|
|
+ self.det_heads = build_det_head(cfg, self.fpn_dims, self.head_dim, num_classes)
|
|
|
|
|
|
## ----------- Preds -----------
|
|
|
- self.obj_preds = nn.ModuleList(
|
|
|
- [nn.Conv2d(head.reg_out_dim, 1, kernel_size=1)
|
|
|
- for head in self.heads
|
|
|
- ])
|
|
|
- self.cls_preds = nn.ModuleList(
|
|
|
- [nn.Conv2d(head.cls_out_dim, self.num_classes, kernel_size=1)
|
|
|
- for head in self.heads
|
|
|
- ])
|
|
|
- self.reg_preds = nn.ModuleList(
|
|
|
- [nn.Conv2d(head.reg_out_dim, 4, kernel_size=1)
|
|
|
- for head in self.heads
|
|
|
- ])
|
|
|
-
|
|
|
-
|
|
|
- # ---------------------- Basic Functions ----------------------
|
|
|
- ## generate anchor points
|
|
|
- def generate_anchors(self, level, fmp_size):
|
|
|
- """
|
|
|
- fmp_size: (List) [H, W]
|
|
|
- """
|
|
|
- # generate grid cells
|
|
|
- fmp_h, fmp_w = fmp_size
|
|
|
- anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
|
|
|
- # [H, W, 2] -> [HW, 2]
|
|
|
- anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
|
|
|
- anchor_xy += 0.5 # add center offset
|
|
|
- anchor_xy *= self.stride[level]
|
|
|
- anchors = anchor_xy.to(self.device)
|
|
|
-
|
|
|
- return anchors
|
|
|
-
|
|
|
+ self.pred_layers = build_pred_layer(
|
|
|
+ self.head_dim, self.head_dim, self.stride, num_classes, num_coords=4, num_levels=len(self.stride))
|
|
|
+
|
|
|
+
|
|
|
## post-process
|
|
|
def post_process(self, obj_preds, cls_preds, box_preds):
|
|
|
"""
|
|
|
@@ -101,6 +72,10 @@ class YOLOvx(nn.Module):
|
|
|
all_bboxes = []
|
|
|
|
|
|
for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
|
|
|
+ obj_pred_i = obj_pred_i[0]
|
|
|
+ cls_pred_i = cls_pred_i[0]
|
|
|
+ box_pred_i = box_pred_i[0]
|
|
|
+
|
|
|
# (H x W x KA x C,)
|
|
|
scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
|
|
|
|
|
|
@@ -145,48 +120,29 @@ class YOLOvx(nn.Module):
|
|
|
# ---------------------- Main Process for Inference ----------------------
|
|
|
@torch.no_grad()
|
|
|
def inference_single_image(self, x):
|
|
|
- # backbone
|
|
|
+ # ---------------- Backbone ----------------
|
|
|
pyramid_feats = self.backbone(x)
|
|
|
|
|
|
- # fpn
|
|
|
+ # ---------------- Neck: SPP ----------------
|
|
|
+ pyramid_feats[-1] = self.neck(pyramid_feats[-1])
|
|
|
+
|
|
|
+ # ---------------- Neck: PaFPN ----------------
|
|
|
pyramid_feats = self.fpn(pyramid_feats)
|
|
|
|
|
|
- # non-shared heads
|
|
|
- all_obj_preds = []
|
|
|
- all_cls_preds = []
|
|
|
- all_box_preds = []
|
|
|
- for level, (feat, head) in enumerate(zip(pyramid_feats, self.heads)):
|
|
|
- cls_feat, reg_feat = head(feat)
|
|
|
-
|
|
|
- # [1, C, H, W]
|
|
|
- obj_pred = self.obj_preds[level](reg_feat)
|
|
|
- cls_pred = self.cls_preds[level](cls_feat)
|
|
|
- reg_pred = self.reg_preds[level](reg_feat)
|
|
|
-
|
|
|
- # anchors: [M, 2]
|
|
|
- fmp_size = cls_pred.shape[-2:]
|
|
|
- anchors = self.generate_anchors(level, fmp_size)
|
|
|
-
|
|
|
- # [1, C, H, W] -> [H, W, C] -> [M, C]
|
|
|
- obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
|
|
|
- cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
|
|
|
- reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
|
|
|
-
|
|
|
- # decode bbox
|
|
|
- ctr_pred = reg_pred[..., :2] * self.stride[level] + anchors[..., :2]
|
|
|
- wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride[level]
|
|
|
- pred_x1y1 = ctr_pred - wh_pred * 0.5
|
|
|
- pred_x2y2 = ctr_pred + wh_pred * 0.5
|
|
|
- box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
|
|
|
-
|
|
|
- all_obj_preds.append(obj_pred)
|
|
|
- all_cls_preds.append(cls_pred)
|
|
|
- all_box_preds.append(box_pred)
|
|
|
+ # ---------------- Heads ----------------
|
|
|
+ cls_feats, reg_feats = self.det_heads(pyramid_feats)
|
|
|
+
|
|
|
+ # ---------------- Preds ----------------
|
|
|
+ outputs = self.pred_layers(cls_feats, reg_feats)
|
|
|
+
|
|
|
+ all_obj_preds = outputs['pred_obj']
|
|
|
+ all_cls_preds = outputs['pred_cls']
|
|
|
+ all_box_preds = outputs['pred_box']
|
|
|
|
|
|
if self.deploy:
|
|
|
- obj_preds = torch.cat(all_obj_preds, dim=0)
|
|
|
- cls_preds = torch.cat(all_cls_preds, dim=0)
|
|
|
- box_preds = torch.cat(all_box_preds, dim=0)
|
|
|
+ obj_preds = torch.cat(all_obj_preds, dim=1)[0]
|
|
|
+ cls_preds = torch.cat(all_cls_preds, dim=1)[0]
|
|
|
+ box_preds = torch.cat(all_box_preds, dim=1)[0]
|
|
|
scores = torch.sqrt(obj_preds.sigmoid() * cls_preds.sigmoid())
|
|
|
bboxes = box_preds
|
|
|
# [n_anchors_all, 4 + C]
|
|
|
@@ -205,52 +161,19 @@ class YOLOvx(nn.Module):
|
|
|
if not self.trainable:
|
|
|
return self.inference_single_image(x)
|
|
|
else:
|
|
|
- # backbone
|
|
|
+ # ---------------- Backbone ----------------
|
|
|
pyramid_feats = self.backbone(x)
|
|
|
|
|
|
- # fpn
|
|
|
+ # ---------------- Neck: SPP ----------------
|
|
|
+ pyramid_feats[-1] = self.neck(pyramid_feats[-1])
|
|
|
+
|
|
|
+ # ---------------- Neck: PaFPN ----------------
|
|
|
pyramid_feats = self.fpn(pyramid_feats)
|
|
|
|
|
|
- # non-shared heads
|
|
|
- all_anchors = []
|
|
|
- all_obj_preds = []
|
|
|
- all_cls_preds = []
|
|
|
- all_box_preds = []
|
|
|
- for level, (feat, head) in enumerate(zip(pyramid_feats, self.heads)):
|
|
|
- cls_feat, reg_feat = head(feat)
|
|
|
-
|
|
|
- # [B, C, H, W]
|
|
|
- obj_pred = self.obj_preds[level](reg_feat)
|
|
|
- cls_pred = self.cls_preds[level](cls_feat)
|
|
|
- reg_pred = self.reg_preds[level](reg_feat)
|
|
|
-
|
|
|
- B, _, H, W = cls_pred.size()
|
|
|
- fmp_size = [H, W]
|
|
|
- # generate anchor boxes: [M, 4]
|
|
|
- anchors = self.generate_anchors(level, fmp_size)
|
|
|
-
|
|
|
- # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
|
|
|
- obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
|
|
|
- cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
|
|
|
- reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
|
|
|
-
|
|
|
- # decode bbox
|
|
|
- ctr_pred = reg_pred[..., :2] * self.stride[level] + anchors[..., :2]
|
|
|
- wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride[level]
|
|
|
- pred_x1y1 = ctr_pred - wh_pred * 0.5
|
|
|
- pred_x2y2 = ctr_pred + wh_pred * 0.5
|
|
|
- box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
|
|
|
-
|
|
|
- all_obj_preds.append(obj_pred)
|
|
|
- all_cls_preds.append(cls_pred)
|
|
|
- all_box_preds.append(box_pred)
|
|
|
- all_anchors.append(anchors)
|
|
|
-
|
|
|
- # output dict
|
|
|
- outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
|
|
|
- "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
|
|
|
- "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
|
|
|
- "anchors": all_anchors, # List(Tensor) [B, M, 2]
|
|
|
- 'strides': self.stride} # List(Int) [8, 16, 32]
|
|
|
+ # ---------------- Heads ----------------
|
|
|
+ cls_feats, reg_feats = self.det_heads(pyramid_feats)
|
|
|
|
|
|
+ # ---------------- Preds ----------------
|
|
|
+ outputs = self.pred_layers(cls_feats, reg_feats)
|
|
|
+
|
|
|
return outputs
|