浏览代码

update README

yjh0410 2 年之前
父节点
当前提交
4d92157a9f
共有 2 个文件被更改,包括 34 次插入24 次删除
  1. 17 12
      README.md
  2. 17 12
      README_CN.md

+ 17 - 12
README.md

@@ -98,18 +98,23 @@ For example:
 python train.py --cuda -d coco --root path/to/COCO -v yolov1 -bs 16 --max_epoch 150 --wp_epoch 1 --eval_epoch 10 --fp16 --ema --multi_scale
 ```
 
-| Model        |   Backbone    | Scale |  IP  | Epoch |  FPS  | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | Weight |
-|--------------|---------------|-------|------|-------|-------|------------------------|-------------------|--------|
-| YOLOv1       | ResNet-18     |  640  |  √   |  150  |       |        27.9            |       47.5        | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov1_coco.pth) |
-| YOLOv2       | DarkNet-19    |  640  |  √   |  150  |       |        32.7            |       50.9        | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov2_coco.pth) |
-| YOLOv3       | DarkNet-53    |  640  |  √   |  250  |       |        42.9            |       63.5        | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov3_coco.pth) |
-| YOLOv4       | CSPDarkNet-L  |  640  |  √   |  250  |       |        46.6            |       65.8        | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov4_coco.pth) |
-| YOLOv5       | CSPDarkNet-53 |  640  |  √   |  250  |       |                        |                   |  |
-| YOLOX        | CSPDarkNet-L  |  640  |  √   |  300  |       |        46.6            |       66.1        | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_coco.pth) |
-| YOLOv7-Nano  | ELANNet-Nano  |  640  |  √   |  300  |       |                        |                   |  |
-| YOLOv7-Tiny  | ELANNet-Tiny  |  640  |  √   |  300  |       |                        |                   |  |
-| YOLOv7-Large | ELANNet-Large |  640  |  √   |  300  |       |                        |                   |  |
-| YOLOv7-Huge  | ELANNet-Huge  |  640  |  √   |  300  |       |                        |                   |  |
+| Model         |   Backbone         | Scale |  IP  | Epoch |  FPS  | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | Weight |
+|---------------|--------------------|-------|------|-------|-------|------------------------|-------------------|--------|
+| YOLOv1        | ResNet-18          |  640  |  √   |  150  |       |        27.9            |       47.5        | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov1_coco.pth) |
+| YOLOv2        | DarkNet-19         |  640  |  √   |  150  |       |        32.7            |       50.9        | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov2_coco.pth) |
+| YOLOv3        | DarkNet-53         |  640  |  √   |  250  |       |        42.9            |       63.5        | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov3_coco.pth) |
+| YOLOv4        | CSPDarkNet-L       |  640  |  √   |  250  |       |        46.6            |       65.8        | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov4_coco.pth) |
+| YOLOv5        | CSPDarkNet-53      |  640  |  √   |  250  |       |                        |                   |  |
+| YOLOX         | CSPDarkNet-L       |  640  |  √   |  300  |       |        46.6            |       66.1        | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_coco.pth) |
+| YOLOv7-Nano   | ELANNet-Nano       |  640  |  √   |  300  |       |                        |                   |  |
+| YOLOv7-Tiny   | ELANNet-Tiny       |  640  |  √   |  300  |       |                        |                   |  |
+| YOLOv7-Large  | ELANNet-Large      |  640  |  √   |  300  |       |                        |                   |  |
+| YOLOv7-Huge   | ELANNet-Huge       |  640  |  √   |  300  |       |                        |                   |  |
+| YOLOv8-Nano   | CSP-ELANNet-Nano   |  640  |  ×   |  500  |       |                        |                   |  |
+| YOLOv8-Small  | CSP-ELANNet-Small  |  640  |  ×   |  500  |       |                        |                   |  |
+| YOLOv8-Medium | CSP-ELANNet-Medium |  640  |  ×   |  500  |       |                        |                   |  |
+| YOLOv8-Large  | CSP-ELANNet-Large  |  640  |  ×   |  500  |       |                        |                   |  |
+| YOLOv8-Huge   | CSP-ELANNet-Large  |  640  |  ×   |  500  |       |                        |                   |  |
 
 *All models are trained with ImageNet pretrained weight (IP). All FLOPs are measured with a 640x640 image size on COCO val2017. The FPS is measured with batch size 1 on 3090 GPU from the model inference to the NMS operation.*
 

+ 17 - 12
README_CN.md

@@ -101,18 +101,23 @@ python train.py --cuda -d coco --root path/to/COCO -v yolov1 -bs 16 --max_epoch
 
 **P5-Model on COCO:**
 
-| Model        |   Backbone    | Scale |  IP  | Epoch |  FPS  | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | Weight |
-|--------------|---------------|-------|------|-------|-------|------------------------|-------------------|--------|
-| YOLOv1       | ResNet-18     |  640  |  √   |  150  |       |        27.9            |       47.5        | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov1_coco.pth) |
-| YOLOv2       | DarkNet-19    |  640  |  √   |  150  |       |        32.7            |       50.9        | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov2_coco.pth) |
-| YOLOv3       | DarkNet-53    |  640  |  √   |  250  |       |        42.9            |       63.5        | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov3_coco.pth) |
-| YOLOv4       | CSPDarkNet-L  |  640  |  √   |  250  |       |        46.6            |       65.8        | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov4_coco.pth) |
-| YOLOv5       | CSPDarkNet-53 |  640  |  √   |  250  |       |                        |                   |  |
-| YOLOX        | CSPDarkNet-L  |  640  |  √   |  300  |       |        46.6            |       66.1        | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_coco.pth) |
-| YOLOv7-Nano  | ELANNet-Nano  |  640  |  √   |  300  |       |                        |                   |  |
-| YOLOv7-Tiny  | ELANNet-Tiny  |  640  |  √   |  300  |       |                        |                   |  |
-| YOLOv7-Large | ELANNet-Large |  640  |  √   |  300  |       |                        |                   |  |
-| YOLOv7-Huge  | ELANNet-Huge  |  640  |  √   |  300  |       |                        |                   |  |
+| Model         |   Backbone         | Scale |  IP  | Epoch |  FPS  | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | Weight |
+|---------------|--------------------|-------|------|-------|-------|------------------------|-------------------|--------|
+| YOLOv1        | ResNet-18          |  640  |  √   |  150  |       |        27.9            |       47.5        | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov1_coco.pth) |
+| YOLOv2        | DarkNet-19         |  640  |  √   |  150  |       |        32.7            |       50.9        | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov2_coco.pth) |
+| YOLOv3        | DarkNet-53         |  640  |  √   |  250  |       |        42.9            |       63.5        | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov3_coco.pth) |
+| YOLOv4        | CSPDarkNet-L       |  640  |  √   |  250  |       |        46.6            |       65.8        | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov4_coco.pth) |
+| YOLOv5        | CSPDarkNet-53      |  640  |  √   |  250  |       |                        |                   |  |
+| YOLOX         | CSPDarkNet-L       |  640  |  √   |  300  |       |        46.6            |       66.1        | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_coco.pth) |
+| YOLOv7-Nano   | ELANNet-Nano       |  640  |  √   |  300  |       |                        |                   |  |
+| YOLOv7-Tiny   | ELANNet-Tiny       |  640  |  √   |  300  |       |                        |                   |  |
+| YOLOv7-Large  | ELANNet-Large      |  640  |  √   |  300  |       |                        |                   |  |
+| YOLOv7-Huge   | ELANNet-Huge       |  640  |  √   |  300  |       |                        |                   |  |
+| YOLOv8-Nano   | CSP-ELANNet-Nano   |  640  |  ×   |  500  |       |                        |                   |  |
+| YOLOv8-Small  | CSP-ELANNet-Small  |  640  |  ×   |  500  |       |                        |                   |  |
+| YOLOv8-Medium | CSP-ELANNet-Medium |  640  |  ×   |  500  |       |                        |                   |  |
+| YOLOv8-Large  | CSP-ELANNet-Large  |  640  |  ×   |  500  |       |                        |                   |  |
+| YOLOv8-Huge   | CSP-ELANNet-Large  |  640  |  ×   |  500  |       |                        |                   |  |
 
 *所有的模型都使用了ImageNet预训练权重(IP),所有的FLOPs都是在COCO-val数据集上以640x640或1280x1280的输入尺寸来测试的。FPS指标是在一张3090型号的GPU上以batch size=1的输入来测试的,请注意,测速的内容包括模型前向推理、后处理以及NMS操作。*