|
|
@@ -4,10 +4,10 @@ import torch.nn.functional as F
|
|
|
from typing import List
|
|
|
|
|
|
try:
|
|
|
- from .basic import BasicConv, RepRTCBlock
|
|
|
+ from .basic import BasicConv, RTCBlock
|
|
|
from .transformer import TransformerEncoder
|
|
|
except:
|
|
|
- from basic import BasicConv, RepRTCBlock
|
|
|
+ from basic import BasicConv, RTCBlock
|
|
|
from transformer import TransformerEncoder
|
|
|
|
|
|
|
|
|
@@ -17,9 +17,9 @@ def build_fpn(cfg, in_dims, out_dim):
|
|
|
return HybridEncoder(in_dims = in_dims,
|
|
|
out_dim = out_dim,
|
|
|
num_blocks = cfg['fpn_num_blocks'],
|
|
|
- expansion = cfg['fpn_expansion'],
|
|
|
act_type = cfg['fpn_act'],
|
|
|
norm_type = cfg['fpn_norm'],
|
|
|
+ depthwise = cfg['fpn_depthwise'],
|
|
|
num_heads = cfg['en_num_heads'],
|
|
|
num_layers = cfg['en_num_layers'],
|
|
|
ffn_dim = cfg['en_ffn_dim'],
|
|
|
@@ -38,9 +38,9 @@ class HybridEncoder(nn.Module):
|
|
|
in_dims :List = [256, 512, 1024],
|
|
|
out_dim :int = 256,
|
|
|
num_blocks :int = 3,
|
|
|
- expansion :float = 1.0,
|
|
|
act_type :str = 'silu',
|
|
|
norm_type :str = 'BN',
|
|
|
+ depthwise :bool = False,
|
|
|
# Transformer's parameters
|
|
|
num_heads :int = 8,
|
|
|
num_layers :int = 1,
|
|
|
@@ -62,9 +62,17 @@ class HybridEncoder(nn.Module):
|
|
|
c3, c4, c5 = in_dims
|
|
|
|
|
|
# ---------------- Input projs ----------------
|
|
|
- self.input_proj_1 = BasicConv(c5, self.out_dim, kernel_size=1, act_type=None, norm_type=norm_type)
|
|
|
- self.input_proj_2 = BasicConv(c4, self.out_dim, kernel_size=1, act_type=None, norm_type=norm_type)
|
|
|
- self.input_proj_3 = BasicConv(c3, self.out_dim, kernel_size=1, act_type=None, norm_type=norm_type)
|
|
|
+ self.reduce_layer_1 = BasicConv(c5, self.out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
|
|
|
+ self.reduce_layer_2 = BasicConv(c4, self.out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
|
|
|
+ self.reduce_layer_3 = BasicConv(c3, self.out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
|
|
|
+
|
|
|
+ # ---------------- Downsample ----------------
|
|
|
+ self.dowmsample_layer_1 = BasicConv(self.out_dim, self.out_dim,
|
|
|
+ kernel_size=3, padding=1, stride=2,
|
|
|
+ act_type=act_type, norm_type=norm_type, depthwise=depthwise)
|
|
|
+ self.dowmsample_layer_2 = BasicConv(self.out_dim, self.out_dim,
|
|
|
+ kernel_size=3, padding=1, stride=2,
|
|
|
+ act_type=act_type, norm_type=norm_type, depthwise=depthwise)
|
|
|
|
|
|
# ---------------- Transformer Encoder ----------------
|
|
|
self.transformer_encoder = TransformerEncoder(d_model = self.out_dim,
|
|
|
@@ -78,51 +86,43 @@ class HybridEncoder(nn.Module):
|
|
|
|
|
|
# ---------------- Top dwon FPN ----------------
|
|
|
## P5 -> P4
|
|
|
- self.reduce_layer_1 = BasicConv(self.out_dim, self.out_dim,
|
|
|
- kernel_size=1, padding=0, stride=1,
|
|
|
- act_type=act_type, norm_type=norm_type)
|
|
|
- self.top_down_layer_1 = RepRTCBlock(in_dim = self.out_dim * 2,
|
|
|
- out_dim = self.out_dim,
|
|
|
- num_blocks = num_blocks,
|
|
|
- expansion = expansion,
|
|
|
- act_type = act_type,
|
|
|
- norm_type = norm_type,
|
|
|
- )
|
|
|
+ self.top_down_layer_1 = RTCBlock(in_dim = self.out_dim * 2,
|
|
|
+ out_dim = self.out_dim,
|
|
|
+ num_blocks = num_blocks,
|
|
|
+ shortcut = False,
|
|
|
+ act_type = act_type,
|
|
|
+ norm_type = norm_type,
|
|
|
+ depthwise = depthwise,
|
|
|
+ )
|
|
|
## P4 -> P3
|
|
|
- self.reduce_layer_2 = BasicConv(self.out_dim, self.out_dim,
|
|
|
- kernel_size=1, padding=0, stride=1,
|
|
|
- act_type=act_type, norm_type=norm_type)
|
|
|
- self.top_down_layer_2 = RepRTCBlock(in_dim = self.out_dim * 2,
|
|
|
- out_dim = self.out_dim,
|
|
|
- num_blocks = num_blocks,
|
|
|
- expansion = expansion,
|
|
|
- act_type = act_type,
|
|
|
- norm_type = norm_type,
|
|
|
- )
|
|
|
+ self.top_down_layer_2 = RTCBlock(in_dim = self.out_dim * 2,
|
|
|
+ out_dim = self.out_dim,
|
|
|
+ num_blocks = num_blocks,
|
|
|
+ shortcut = False,
|
|
|
+ act_type = act_type,
|
|
|
+ norm_type = norm_type,
|
|
|
+ depthwise = depthwise,
|
|
|
+ )
|
|
|
|
|
|
# ---------------- Bottom up PAN----------------
|
|
|
## P3 -> P4
|
|
|
- self.dowmsample_layer_1 = BasicConv(self.out_dim, self.out_dim,
|
|
|
- kernel_size=3, padding=1, stride=2,
|
|
|
- act_type=act_type, norm_type=norm_type)
|
|
|
- self.bottom_up_layer_1 = RepRTCBlock(in_dim = self.out_dim * 2,
|
|
|
- out_dim = self.out_dim,
|
|
|
- num_blocks = num_blocks,
|
|
|
- expansion = expansion,
|
|
|
- act_type = act_type,
|
|
|
- norm_type = norm_type,
|
|
|
- )
|
|
|
+ self.bottom_up_layer_1 = RTCBlock(in_dim = self.out_dim * 2,
|
|
|
+ out_dim = self.out_dim,
|
|
|
+ num_blocks = num_blocks,
|
|
|
+ shortcut = False,
|
|
|
+ act_type = act_type,
|
|
|
+ norm_type = norm_type,
|
|
|
+ depthwise = depthwise,
|
|
|
+ )
|
|
|
## P4 -> P5
|
|
|
- self.dowmsample_layer_2 = BasicConv(self.out_dim, self.out_dim,
|
|
|
- kernel_size=3, padding=1, stride=2,
|
|
|
- act_type=act_type, norm_type=norm_type)
|
|
|
- self.bottom_up_layer_2 = RepRTCBlock(in_dim = self.out_dim * 2,
|
|
|
- out_dim = self.out_dim,
|
|
|
- num_blocks = num_blocks,
|
|
|
- expansion = expansion,
|
|
|
- act_type = act_type,
|
|
|
- norm_type = norm_type,
|
|
|
- )
|
|
|
+ self.bottom_up_layer_2 = RTCBlock(in_dim = self.out_dim * 2,
|
|
|
+ out_dim = self.out_dim,
|
|
|
+ num_blocks = num_blocks,
|
|
|
+ shortcut = False,
|
|
|
+ act_type = act_type,
|
|
|
+ norm_type = norm_type,
|
|
|
+ depthwise = depthwise,
|
|
|
+ )
|
|
|
|
|
|
self.init_weights()
|
|
|
|
|
|
@@ -138,31 +138,26 @@ class HybridEncoder(nn.Module):
|
|
|
c3, c4, c5 = features
|
|
|
|
|
|
# -------- Input projs --------
|
|
|
- p5 = self.input_proj_1(c5)
|
|
|
- p4 = self.input_proj_2(c4)
|
|
|
- p3 = self.input_proj_3(c3)
|
|
|
+ p5 = self.reduce_layer_1(c5)
|
|
|
+ p4 = self.reduce_layer_2(c4)
|
|
|
+ p3 = self.reduce_layer_3(c3)
|
|
|
|
|
|
# -------- Transformer encoder --------
|
|
|
p5 = self.transformer_encoder(p5)
|
|
|
|
|
|
# -------- Top down FPN --------
|
|
|
- ## P5 -> P4
|
|
|
- p5_in = self.reduce_layer_1(p5)
|
|
|
- p5_up = F.interpolate(p5_in, scale_factor=2.0)
|
|
|
- p4 = self.top_down_layer_1(torch.cat([p4, p5_up], dim=1))
|
|
|
+ p5_up = F.interpolate(p5, scale_factor=2.0)
|
|
|
+ p4 = self.top_down_layer_1(torch.cat([p4, p5_up], dim=1))
|
|
|
|
|
|
- ## P4 -> P3
|
|
|
- p4_in = self.reduce_layer_2(p4)
|
|
|
- p4_up = F.interpolate(p4_in, scale_factor=2.0)
|
|
|
- p3 = self.top_down_layer_2(torch.cat([p3, p4_up], dim=1))
|
|
|
+ p4_up = F.interpolate(p4, scale_factor=2.0)
|
|
|
+ p3 = self.top_down_layer_2(torch.cat([p3, p4_up], dim=1))
|
|
|
|
|
|
# -------- Bottom up PAN --------
|
|
|
- ## P3 -> P4
|
|
|
p3_ds = self.dowmsample_layer_1(p3)
|
|
|
- p4 = self.bottom_up_layer_1(torch.cat([p4_in, p3_ds], dim=1))
|
|
|
+ p4 = self.bottom_up_layer_1(torch.cat([p4, p3_ds], dim=1))
|
|
|
|
|
|
p4_ds = self.dowmsample_layer_2(p4)
|
|
|
- p5 = self.bottom_up_layer_2(torch.cat([p5_in, p4_ds], dim=1))
|
|
|
+ p5 = self.bottom_up_layer_2(torch.cat([p5, p4_ds], dim=1))
|
|
|
|
|
|
out_feats = [p3, p4, p5]
|
|
|
|
|
|
@@ -178,7 +173,7 @@ if __name__ == '__main__':
|
|
|
'fpn_norm': 'BN',
|
|
|
'fpn_depthwise': False,
|
|
|
'fpn_num_blocks': 3,
|
|
|
- 'fpn_expansion': 1.0,
|
|
|
+ 'fpn_expansion': 0.5,
|
|
|
'en_num_heads': 8,
|
|
|
'en_num_layers': 1,
|
|
|
'en_ffn_dim': 1024,
|
|
|
@@ -202,4 +197,4 @@ if __name__ == '__main__':
|
|
|
flops, params = profile(model, inputs=(pyramid_feats, ), verbose=False)
|
|
|
print('==============================')
|
|
|
print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
|
|
|
- print('Params : {:.2f} M'.format(params / 1e6))
|
|
|
+ print('Params : {:.2f} M'.format(params / 1e6))
|