|
|
@@ -6,19 +6,11 @@
|
|
|
- **Scratch**: We just train the detector on the COCO without any pretrained weights for the backbone.
|
|
|
|
|
|
For the small model:
|
|
|
-| Model | Pretrained | Scale | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
-|----------|------------|-------|------------------------|-------------------|-------------------|--------------------|--------|
|
|
|
-| RTCDet-S | Scratch | 640 | | | | | |
|
|
|
-| RTCDet-S | IN1K Cls | 640 | | | | | |
|
|
|
-| RTCDet-S | IN1K MIM | 640 | | | | | |
|
|
|
-
|
|
|
-For the large model:
|
|
|
-| Model | Pretrained | Scale | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
-|----------|------------|-------|------------------------|-------------------|-------------------|--------------------|--------|
|
|
|
-| RTCDet-L | Scratch | 640 | | | | | |
|
|
|
-| RTCDet-L | IN1K Cls | 640 | | | | | |
|
|
|
-| RTCDet-L | IN1K MIM | 640 | | | | | |
|
|
|
-
|
|
|
+| Model | Pretrained | Scale | Epoch | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
+|----------|------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|
|
|
|
+| RTCDet-S | Scratch | 640 | 300 | | | | | |
|
|
|
+| RTCDet-S | IN1K Cls | 640 | 300 | | | | | |
|
|
|
+| RTCDet-S | IN1K MIM | 640 | 300 | | | | | |
|
|
|
|
|
|
## Results on the COCO-val
|
|
|
| Model | Batch | Scale | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
@@ -31,7 +23,7 @@ For the large model:
|
|
|
|
|
|
- For the backbone, we ... (not sure)
|
|
|
- For training, we train RTCDet series with 300 epochs on COCO.
|
|
|
-- For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation, following the YOLOX.
|
|
|
+- For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation, following the YOLOv8.
|
|
|
- For optimizer, we use AdamW with weight decay 0.05 and base per image lr 0.001 / 64,.
|
|
|
- For learning rate scheduler, we use Linear decay scheduler.
|
|
|
|