|
|
@@ -1,238 +0,0 @@
|
|
|
-import math
|
|
|
-import warnings
|
|
|
-import numpy as np
|
|
|
-import torch
|
|
|
-import torch.nn as nn
|
|
|
-
|
|
|
-
|
|
|
-def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
|
|
- """Copy from timm"""
|
|
|
- with torch.no_grad():
|
|
|
- """Copy from timm"""
|
|
|
- def norm_cdf(x):
|
|
|
- return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
|
|
-
|
|
|
- if (mean < a - 2 * std) or (mean > b + 2 * std):
|
|
|
- warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
|
|
- "The distribution of values may be incorrect.",
|
|
|
- stacklevel=2)
|
|
|
-
|
|
|
- l = norm_cdf((a - mean) / std)
|
|
|
- u = norm_cdf((b - mean) / std)
|
|
|
-
|
|
|
- tensor.uniform_(2 * l - 1, 2 * u - 1)
|
|
|
- tensor.erfinv_()
|
|
|
-
|
|
|
- tensor.mul_(std * math.sqrt(2.))
|
|
|
- tensor.add_(mean)
|
|
|
-
|
|
|
- tensor.clamp_(min=a, max=b)
|
|
|
-
|
|
|
- return tensor
|
|
|
-
|
|
|
-
|
|
|
-# ---------------------------- NMS ----------------------------
|
|
|
-## basic NMS
|
|
|
-def nms(bboxes, scores, nms_thresh):
|
|
|
- """"Pure Python NMS."""
|
|
|
- x1 = bboxes[:, 0] #xmin
|
|
|
- y1 = bboxes[:, 1] #ymin
|
|
|
- x2 = bboxes[:, 2] #xmax
|
|
|
- y2 = bboxes[:, 3] #ymax
|
|
|
-
|
|
|
- areas = (x2 - x1) * (y2 - y1)
|
|
|
- order = scores.argsort()[::-1]
|
|
|
-
|
|
|
- keep = []
|
|
|
- while order.size > 0:
|
|
|
- i = order[0]
|
|
|
- keep.append(i)
|
|
|
- # compute iou
|
|
|
- xx1 = np.maximum(x1[i], x1[order[1:]])
|
|
|
- yy1 = np.maximum(y1[i], y1[order[1:]])
|
|
|
- xx2 = np.minimum(x2[i], x2[order[1:]])
|
|
|
- yy2 = np.minimum(y2[i], y2[order[1:]])
|
|
|
-
|
|
|
- w = np.maximum(1e-10, xx2 - xx1)
|
|
|
- h = np.maximum(1e-10, yy2 - yy1)
|
|
|
- inter = w * h
|
|
|
-
|
|
|
- iou = inter / (areas[i] + areas[order[1:]] - inter + 1e-14)
|
|
|
- #reserve all the boundingbox whose ovr less than thresh
|
|
|
- inds = np.where(iou <= nms_thresh)[0]
|
|
|
- order = order[inds + 1]
|
|
|
-
|
|
|
- return keep
|
|
|
-
|
|
|
-## class-agnostic NMS
|
|
|
-def multiclass_nms_class_agnostic(scores, labels, bboxes, nms_thresh):
|
|
|
- # nms
|
|
|
- keep = nms(bboxes, scores, nms_thresh)
|
|
|
- scores = scores[keep]
|
|
|
- labels = labels[keep]
|
|
|
- bboxes = bboxes[keep]
|
|
|
-
|
|
|
- return scores, labels, bboxes
|
|
|
-
|
|
|
-## class-aware NMS
|
|
|
-def multiclass_nms_class_aware(scores, labels, bboxes, nms_thresh, num_classes):
|
|
|
- # nms
|
|
|
- keep = np.zeros(len(bboxes), dtype=np.int32)
|
|
|
- for i in range(num_classes):
|
|
|
- inds = np.where(labels == i)[0]
|
|
|
- if len(inds) == 0:
|
|
|
- continue
|
|
|
- c_bboxes = bboxes[inds]
|
|
|
- c_scores = scores[inds]
|
|
|
- c_keep = nms(c_bboxes, c_scores, nms_thresh)
|
|
|
- keep[inds[c_keep]] = 1
|
|
|
- keep = np.where(keep > 0)
|
|
|
- scores = scores[keep]
|
|
|
- labels = labels[keep]
|
|
|
- bboxes = bboxes[keep]
|
|
|
-
|
|
|
- return scores, labels, bboxes
|
|
|
-
|
|
|
-## multi-class NMS
|
|
|
-def multiclass_nms(scores, labels, bboxes, nms_thresh, num_classes, class_agnostic=False):
|
|
|
- if class_agnostic:
|
|
|
- return multiclass_nms_class_agnostic(scores, labels, bboxes, nms_thresh)
|
|
|
- else:
|
|
|
- return multiclass_nms_class_aware(scores, labels, bboxes, nms_thresh, num_classes)
|
|
|
-
|
|
|
-
|
|
|
-# ----------------- Customed NormLayer Ops -----------------
|
|
|
-class LayerNorm2D(nn.Module):
|
|
|
- def __init__(self, normalized_shape, norm_layer=nn.LayerNorm):
|
|
|
- super().__init__()
|
|
|
- self.ln = norm_layer(normalized_shape) if norm_layer is not None else nn.Identity()
|
|
|
-
|
|
|
- def forward(self, x):
|
|
|
- """
|
|
|
- x: N C H W
|
|
|
- """
|
|
|
- x = x.permute(0, 2, 3, 1)
|
|
|
- x = self.ln(x)
|
|
|
- x = x.permute(0, 3, 1, 2)
|
|
|
- return x
|
|
|
-
|
|
|
-
|
|
|
-# ----------------- Basic CNN Ops -----------------
|
|
|
-def get_conv2d(c1, c2, k, p, s, g, bias=False):
|
|
|
- conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, groups=g, bias=bias)
|
|
|
-
|
|
|
- return conv
|
|
|
-
|
|
|
-def get_activation(act_type=None):
|
|
|
- if act_type == 'relu':
|
|
|
- return nn.ReLU(inplace=True)
|
|
|
- elif act_type == 'lrelu':
|
|
|
- return nn.LeakyReLU(0.1, inplace=True)
|
|
|
- elif act_type == 'mish':
|
|
|
- return nn.Mish(inplace=True)
|
|
|
- elif act_type == 'silu':
|
|
|
- return nn.SiLU(inplace=True)
|
|
|
- elif act_type == 'gelu':
|
|
|
- return nn.GELU()
|
|
|
- elif act_type is None:
|
|
|
- return nn.Identity()
|
|
|
- else:
|
|
|
- raise NotImplementedError
|
|
|
-
|
|
|
-def get_norm(norm_type, dim):
|
|
|
- if norm_type == 'BN':
|
|
|
- return nn.BatchNorm2d(dim)
|
|
|
- elif norm_type == 'GN':
|
|
|
- return nn.GroupNorm(num_groups=32, num_channels=dim)
|
|
|
- elif norm_type is None:
|
|
|
- return nn.Identity()
|
|
|
- else:
|
|
|
- raise NotImplementedError
|
|
|
-
|
|
|
-class BasicConv(nn.Module):
|
|
|
- def __init__(self,
|
|
|
- in_dim, # in channels
|
|
|
- out_dim, # out channels
|
|
|
- kernel_size=1, # kernel size
|
|
|
- padding=0, # padding
|
|
|
- stride=1, # padding
|
|
|
- act_type :str = 'lrelu', # activation
|
|
|
- norm_type :str = 'BN', # normalization
|
|
|
- ):
|
|
|
- super(BasicConv, self).__init__()
|
|
|
- add_bias = False if norm_type else True
|
|
|
- self.conv = get_conv2d(in_dim, out_dim, k=kernel_size, p=padding, s=stride, g=1, bias=add_bias)
|
|
|
- self.norm = get_norm(norm_type, out_dim)
|
|
|
- self.act = get_activation(act_type)
|
|
|
-
|
|
|
- def forward(self, x):
|
|
|
- return self.act(self.norm(self.conv(x)))
|
|
|
-
|
|
|
-class UpSampleWrapper(nn.Module):
|
|
|
- """Upsample last feat map to specific stride."""
|
|
|
- def __init__(self, in_dim, upsample_factor):
|
|
|
- super(UpSampleWrapper, self).__init__()
|
|
|
- # ---------- Basic parameters ----------
|
|
|
- self.upsample_factor = upsample_factor
|
|
|
-
|
|
|
- # ---------- Network parameters ----------
|
|
|
- if upsample_factor == 1:
|
|
|
- self.upsample = nn.Identity()
|
|
|
- else:
|
|
|
- scale = int(math.log2(upsample_factor))
|
|
|
- dim = in_dim
|
|
|
- layers = []
|
|
|
- for _ in range(scale-1):
|
|
|
- layers += [
|
|
|
- nn.ConvTranspose2d(dim, dim, kernel_size=2, stride=2),
|
|
|
- LayerNorm2D(dim),
|
|
|
- nn.GELU()
|
|
|
- ]
|
|
|
- layers += [nn.ConvTranspose2d(dim, dim, kernel_size=2, stride=2)]
|
|
|
- self.upsample = nn.Sequential(*layers)
|
|
|
- self.out_dim = dim
|
|
|
-
|
|
|
- def forward(self, x):
|
|
|
- x = self.upsample(x)
|
|
|
-
|
|
|
- return x
|
|
|
-
|
|
|
-
|
|
|
-# ----------------- MLP modules -----------------
|
|
|
-class MLP(nn.Module):
|
|
|
- def __init__(self, in_dim, hidden_dim, out_dim, num_layers):
|
|
|
- super().__init__()
|
|
|
- self.num_layers = num_layers
|
|
|
- h = [hidden_dim] * (num_layers - 1)
|
|
|
- self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([in_dim] + h, h + [out_dim]))
|
|
|
-
|
|
|
- def forward(self, x):
|
|
|
- for i, layer in enumerate(self.layers):
|
|
|
- x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
|
|
- return x
|
|
|
-
|
|
|
-class FFN(nn.Module):
|
|
|
- def __init__(self, d_model=256, mlp_ratio=4.0, dropout=0., act_type='relu', pre_norm=False):
|
|
|
- super().__init__()
|
|
|
- # ----------- Basic parameters -----------
|
|
|
- self.pre_norm = pre_norm
|
|
|
- self.fpn_dim = round(d_model * mlp_ratio)
|
|
|
- # ----------- Network parameters -----------
|
|
|
- self.linear1 = nn.Linear(d_model, self.fpn_dim)
|
|
|
- self.activation = get_activation(act_type)
|
|
|
- self.dropout2 = nn.Dropout(dropout)
|
|
|
- self.linear2 = nn.Linear(self.fpn_dim, d_model)
|
|
|
- self.dropout3 = nn.Dropout(dropout)
|
|
|
- self.norm = nn.LayerNorm(d_model)
|
|
|
-
|
|
|
- def forward(self, src):
|
|
|
- if self.pre_norm:
|
|
|
- src = self.norm(src)
|
|
|
- src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
|
|
|
- src = src + self.dropout3(src2)
|
|
|
- else:
|
|
|
- src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
|
|
|
- src = src + self.dropout3(src2)
|
|
|
- src = self.norm(src)
|
|
|
-
|
|
|
- return src
|