|
|
@@ -3,7 +3,6 @@ import torch.distributed as dist
|
|
|
|
|
|
import time
|
|
|
import os
|
|
|
-import math
|
|
|
import numpy as np
|
|
|
import random
|
|
|
|
|
|
@@ -11,232 +10,240 @@ from utils import distributed_utils
|
|
|
from utils.vis_tools import vis_data
|
|
|
|
|
|
|
|
|
-def refine_targets(targets, min_box_size):
|
|
|
- # rescale targets
|
|
|
- for tgt in targets:
|
|
|
- boxes = tgt["boxes"].clone()
|
|
|
- labels = tgt["labels"].clone()
|
|
|
- # refine tgt
|
|
|
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
|
|
|
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
|
|
|
- keep = (min_tgt_size >= min_box_size)
|
|
|
-
|
|
|
- tgt["boxes"] = boxes[keep]
|
|
|
- tgt["labels"] = labels[keep]
|
|
|
-
|
|
|
- return targets
|
|
|
-
|
|
|
-
|
|
|
-def rescale_image_targets(images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
|
|
|
- """
|
|
|
- Deployed for Multi scale trick.
|
|
|
- """
|
|
|
- if isinstance(stride, int):
|
|
|
- max_stride = stride
|
|
|
- elif isinstance(stride, list):
|
|
|
- max_stride = max(stride)
|
|
|
-
|
|
|
- # During training phase, the shape of input image is square.
|
|
|
- old_img_size = images.shape[-1]
|
|
|
- new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
|
|
|
- new_img_size = new_img_size // max_stride * max_stride # size
|
|
|
- if new_img_size / old_img_size != 1:
|
|
|
- # interpolate
|
|
|
- images = torch.nn.functional.interpolate(
|
|
|
- input=images,
|
|
|
- size=new_img_size,
|
|
|
- mode='bilinear',
|
|
|
- align_corners=False)
|
|
|
- # rescale targets
|
|
|
- for tgt in targets:
|
|
|
- boxes = tgt["boxes"].clone()
|
|
|
- labels = tgt["labels"].clone()
|
|
|
- boxes = torch.clamp(boxes, 0, old_img_size)
|
|
|
- # rescale box
|
|
|
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
|
|
|
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
|
|
|
- # refine tgt
|
|
|
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
|
|
|
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
|
|
|
- keep = (min_tgt_size >= min_box_size)
|
|
|
-
|
|
|
- tgt["boxes"] = boxes[keep]
|
|
|
- tgt["labels"] = labels[keep]
|
|
|
-
|
|
|
- return images, targets, new_img_size
|
|
|
-
|
|
|
-
|
|
|
-def train_one_epoch(epoch,
|
|
|
- total_epochs,
|
|
|
- args,
|
|
|
- device,
|
|
|
- ema,
|
|
|
- model,
|
|
|
- criterion,
|
|
|
- cfg,
|
|
|
- dataloader,
|
|
|
- optimizer,
|
|
|
- scheduler,
|
|
|
- lf,
|
|
|
- scaler,
|
|
|
- last_opt_step):
|
|
|
- epoch_size = len(dataloader)
|
|
|
- img_size = args.img_size
|
|
|
- t0 = time.time()
|
|
|
- nw = epoch_size * args.wp_epoch
|
|
|
- accumulate = accumulate = max(1, round(64 / args.batch_size))
|
|
|
-
|
|
|
- # train one epoch
|
|
|
- for iter_i, (images, targets) in enumerate(dataloader):
|
|
|
- ni = iter_i + epoch * epoch_size
|
|
|
- # Warmup
|
|
|
- if ni <= nw:
|
|
|
- xi = [0, nw] # x interp
|
|
|
- accumulate = max(1, np.interp(ni, xi, [1, 64 / args.batch_size]).round())
|
|
|
- for j, x in enumerate(optimizer.param_groups):
|
|
|
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
|
|
- x['lr'] = np.interp(
|
|
|
- ni, xi, [cfg['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
|
|
|
- if 'momentum' in x:
|
|
|
- x['momentum'] = np.interp(ni, xi, [cfg['warmup_momentum'], cfg['momentum']])
|
|
|
-
|
|
|
- # to device
|
|
|
- images = images.to(device, non_blocking=True).float() / 255.
|
|
|
-
|
|
|
- # multi scale
|
|
|
- if args.multi_scale:
|
|
|
- images, targets, img_size = rescale_image_targets(
|
|
|
- images, targets, model.stride, args.min_box_size, cfg['multi_scale'])
|
|
|
- else:
|
|
|
- targets = refine_targets(targets, args.min_box_size)
|
|
|
-
|
|
|
- # visualize train targets
|
|
|
- if args.vis_tgt:
|
|
|
- vis_data(images*255, targets)
|
|
|
-
|
|
|
- # inference
|
|
|
- with torch.cuda.amp.autocast(enabled=args.fp16):
|
|
|
- outputs = model(images)
|
|
|
- # loss
|
|
|
- loss_dict = criterion(outputs, targets, epoch)
|
|
|
- losses = loss_dict['losses']
|
|
|
- losses *= images.shape[0] # loss * bs
|
|
|
-
|
|
|
- # reduce
|
|
|
- loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
|
|
|
-
|
|
|
- if args.distributed:
|
|
|
- # gradient averaged between devices in DDP mode
|
|
|
- losses *= distributed_utils.get_world_size()
|
|
|
-
|
|
|
- # check loss
|
|
|
- try:
|
|
|
- if torch.isnan(losses):
|
|
|
- print('loss is NAN !!')
|
|
|
- continue
|
|
|
- except:
|
|
|
- print(loss_dict)
|
|
|
-
|
|
|
- # backward
|
|
|
- scaler.scale(losses).backward()
|
|
|
-
|
|
|
- # Optimize
|
|
|
- if ni - last_opt_step >= accumulate:
|
|
|
- if cfg['clip_grad'] > 0:
|
|
|
- # unscale gradients
|
|
|
- scaler.unscale_(optimizer)
|
|
|
- # clip gradients
|
|
|
- torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=cfg['clip_grad'])
|
|
|
- # optimizer.step
|
|
|
- scaler.step(optimizer)
|
|
|
- scaler.update()
|
|
|
- optimizer.zero_grad()
|
|
|
- # ema
|
|
|
- if ema:
|
|
|
- ema.update(model)
|
|
|
- last_opt_step = ni
|
|
|
-
|
|
|
- # display
|
|
|
- if distributed_utils.is_main_process() and iter_i % 10 == 0:
|
|
|
- t1 = time.time()
|
|
|
- cur_lr = [param_group['lr'] for param_group in optimizer.param_groups]
|
|
|
- # basic infor
|
|
|
- log = '[Epoch: {}/{}]'.format(epoch+1, total_epochs)
|
|
|
- log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
|
|
|
- log += '[lr: {:.6f}]'.format(cur_lr[2])
|
|
|
- # loss infor
|
|
|
- for k in loss_dict_reduced.keys():
|
|
|
- if k == 'losses' and args.distributed:
|
|
|
- world_size = distributed_utils.get_world_size()
|
|
|
- log += '[{}: {:.2f}]'.format(k, loss_dict[k] / world_size)
|
|
|
- else:
|
|
|
- log += '[{}: {:.2f}]'.format(k, loss_dict[k])
|
|
|
-
|
|
|
- # other infor
|
|
|
- log += '[time: {:.2f}]'.format(t1 - t0)
|
|
|
- log += '[size: {}]'.format(img_size)
|
|
|
-
|
|
|
- # print log infor
|
|
|
- print(log, flush=True)
|
|
|
-
|
|
|
- t0 = time.time()
|
|
|
-
|
|
|
- scheduler.step()
|
|
|
-
|
|
|
- return last_opt_step
|
|
|
-
|
|
|
-
|
|
|
-def val_one_epoch(args,
|
|
|
- model,
|
|
|
- evaluator,
|
|
|
- optimizer,
|
|
|
- epoch,
|
|
|
- best_map,
|
|
|
- path_to_save):
|
|
|
- if distributed_utils.is_main_process():
|
|
|
- # check evaluator
|
|
|
- if evaluator is None:
|
|
|
- print('No evaluator ... save model and go on training.')
|
|
|
- print('Saving state, epoch: {}'.format(epoch + 1))
|
|
|
- weight_name = '{}_no_eval.pth'.format(args.model)
|
|
|
- checkpoint_path = os.path.join(path_to_save, weight_name)
|
|
|
- torch.save({'model': model.state_dict(),
|
|
|
- 'mAP': -1.,
|
|
|
- 'optimizer': optimizer.state_dict(),
|
|
|
- 'epoch': epoch,
|
|
|
- 'args': args},
|
|
|
- checkpoint_path)
|
|
|
-
|
|
|
- else:
|
|
|
- print('eval ...')
|
|
|
- # set eval mode
|
|
|
- model.trainable = False
|
|
|
- model.eval()
|
|
|
-
|
|
|
- # evaluate
|
|
|
- evaluator.evaluate(model)
|
|
|
-
|
|
|
- cur_map = evaluator.map
|
|
|
- if cur_map > best_map:
|
|
|
- # update best-map
|
|
|
- best_map = cur_map
|
|
|
- # save model
|
|
|
- print('Saving state, epoch:', epoch + 1)
|
|
|
- weight_name = '{}_best.pth'.format(args.model)
|
|
|
+
|
|
|
+class Trainer(object):
|
|
|
+ def __init__(self, args, device, cfg, model_ema, optimizer, lf, lr_scheduler, criterion, scaler):
|
|
|
+ # ------------------- basic parameters -------------------
|
|
|
+ self.args = args
|
|
|
+ self.cfg = cfg
|
|
|
+ self.device = device
|
|
|
+ self.epoch = 0
|
|
|
+ self.best_map = -1.
|
|
|
+ # ------------------- core modules -------------------
|
|
|
+ self.model_ema = model_ema
|
|
|
+ self.optimizer = optimizer
|
|
|
+ self.lf = lf
|
|
|
+ self.lr_scheduler = lr_scheduler
|
|
|
+ self.criterion = criterion
|
|
|
+ self.scaler = scaler
|
|
|
+ self.last_opt_step = 0
|
|
|
+
|
|
|
+
|
|
|
+ def train_one_epoch(self, model, train_loader):
|
|
|
+ # basic parameters
|
|
|
+ epoch_size = len(train_loader)
|
|
|
+ img_size = self.args.img_size
|
|
|
+ t0 = time.time()
|
|
|
+ nw = epoch_size * self.args.wp_epoch
|
|
|
+ accumulate = accumulate = max(1, round(64 / self.args.batch_size))
|
|
|
+
|
|
|
+ # train one epoch
|
|
|
+ for iter_i, (images, targets) in enumerate(train_loader):
|
|
|
+ ni = iter_i + self.epoch * epoch_size
|
|
|
+ # Warmup
|
|
|
+ if ni <= nw:
|
|
|
+ xi = [0, nw] # x interp
|
|
|
+ accumulate = max(1, np.interp(ni, xi, [1, 64 / self.args.batch_size]).round())
|
|
|
+ for j, x in enumerate(self.optimizer.param_groups):
|
|
|
+ # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
|
|
+ x['lr'] = np.interp(
|
|
|
+ ni, xi, [self.cfg['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
|
|
|
+ if 'momentum' in x:
|
|
|
+ x['momentum'] = np.interp(ni, xi, [self.cfg['warmup_momentum'], self.cfg['momentum']])
|
|
|
+
|
|
|
+ # to device
|
|
|
+ images = images.to(self.device, non_blocking=True).float() / 255.
|
|
|
+
|
|
|
+ # multi scale
|
|
|
+ if self.args.multi_scale:
|
|
|
+ images, targets, img_size = self.rescale_image_targets(
|
|
|
+ images, targets, model.stride, self.args.min_box_size, self.cfg['multi_scale'])
|
|
|
+ else:
|
|
|
+ targets = self.refine_targets(targets, self.args.min_box_size)
|
|
|
+
|
|
|
+ # visualize train targets
|
|
|
+ if self.args.vis_tgt:
|
|
|
+ vis_data(images*255, targets)
|
|
|
+
|
|
|
+ # inference
|
|
|
+ with torch.cuda.amp.autocast(enabled=self.args.fp16):
|
|
|
+ outputs = model(images)
|
|
|
+ # loss
|
|
|
+ loss_dict = self.criterion(outputs=outputs, targets=targets)
|
|
|
+ losses = loss_dict['losses']
|
|
|
+ losses *= images.shape[0] # loss * bs
|
|
|
+
|
|
|
+ # reduce
|
|
|
+ loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
|
|
|
+
|
|
|
+ if self.args.distributed:
|
|
|
+ # gradient averaged between devices in DDP mode
|
|
|
+ losses *= distributed_utils.get_world_size()
|
|
|
+
|
|
|
+ # check loss
|
|
|
+ try:
|
|
|
+ if torch.isnan(losses):
|
|
|
+ print('loss is NAN !!')
|
|
|
+ continue
|
|
|
+ except:
|
|
|
+ print(loss_dict)
|
|
|
+
|
|
|
+ # backward
|
|
|
+ self.scaler.scale(losses).backward()
|
|
|
+
|
|
|
+ # Optimize
|
|
|
+ if ni - self.last_opt_step >= accumulate:
|
|
|
+ if self.cfg['clip_grad'] > 0:
|
|
|
+ # unscale gradients
|
|
|
+ self.scaler.unscale_(self.optimizer)
|
|
|
+ # clip gradients
|
|
|
+ torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.cfg['clip_grad'])
|
|
|
+ # optimizer.step
|
|
|
+ self.scaler.step(self.optimizer)
|
|
|
+ self.scaler.update()
|
|
|
+ self.optimizer.zero_grad()
|
|
|
+ # ema
|
|
|
+ if self.model_ema is not None:
|
|
|
+ self.model_ema.update(model)
|
|
|
+ self.last_opt_step = ni
|
|
|
+
|
|
|
+ # display
|
|
|
+ if distributed_utils.is_main_process() and iter_i % 10 == 0:
|
|
|
+ t1 = time.time()
|
|
|
+ cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
|
|
|
+ # basic infor
|
|
|
+ log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
|
|
|
+ log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
|
|
|
+ log += '[lr: {:.6f}]'.format(cur_lr[2])
|
|
|
+ # loss infor
|
|
|
+ for k in loss_dict_reduced.keys():
|
|
|
+ if k == 'losses' and self.args.distributed:
|
|
|
+ world_size = distributed_utils.get_world_size()
|
|
|
+ log += '[{}: {:.2f}]'.format(k, loss_dict[k] / world_size)
|
|
|
+ else:
|
|
|
+ log += '[{}: {:.2f}]'.format(k, loss_dict[k])
|
|
|
+
|
|
|
+ # other infor
|
|
|
+ log += '[time: {:.2f}]'.format(t1 - t0)
|
|
|
+ log += '[size: {}]'.format(img_size)
|
|
|
+
|
|
|
+ # print log infor
|
|
|
+ print(log, flush=True)
|
|
|
+
|
|
|
+ t0 = time.time()
|
|
|
+
|
|
|
+ self.lr_scheduler.step()
|
|
|
+ self.epoch += 1
|
|
|
+
|
|
|
+
|
|
|
+ @torch.no_grad()
|
|
|
+ def eval_one_epoch(self, model, evaluator):
|
|
|
+ # chech model
|
|
|
+ model_eval = model if self.model_ema is None else self.model_ema.ema
|
|
|
+
|
|
|
+ # path to save model
|
|
|
+ path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
|
|
|
+ os.makedirs(path_to_save, exist_ok=True)
|
|
|
+
|
|
|
+ if distributed_utils.is_main_process():
|
|
|
+ # check evaluator
|
|
|
+ if evaluator is None:
|
|
|
+ print('No evaluator ... save model and go on training.')
|
|
|
+ print('Saving state, epoch: {}'.format(self.epoch + 1))
|
|
|
+ weight_name = '{}_no_eval.pth'.format(self.args.model)
|
|
|
checkpoint_path = os.path.join(path_to_save, weight_name)
|
|
|
- torch.save({'model': model.state_dict(),
|
|
|
- 'mAP': round(best_map*100, 1),
|
|
|
- 'optimizer': optimizer.state_dict(),
|
|
|
- 'epoch': epoch,
|
|
|
- 'args': args},
|
|
|
+ torch.save({'model': model_eval.state_dict(),
|
|
|
+ 'mAP': -1.,
|
|
|
+ 'optimizer': self.optimizer.state_dict(),
|
|
|
+ 'epoch': self.epoch,
|
|
|
+ 'args': self.args},
|
|
|
checkpoint_path)
|
|
|
+
|
|
|
+ else:
|
|
|
+ print('eval ...')
|
|
|
+ # set eval mode
|
|
|
+ model_eval.trainable = False
|
|
|
+ model_eval.eval()
|
|
|
|
|
|
- # set train mode.
|
|
|
- model.trainable = True
|
|
|
- model.train()
|
|
|
+ # evaluate
|
|
|
+ evaluator.evaluate(model_eval)
|
|
|
|
|
|
- if args.distributed:
|
|
|
- # wait for all processes to synchronize
|
|
|
- dist.barrier()
|
|
|
+ # save model
|
|
|
+ cur_map = evaluator.map
|
|
|
+ if cur_map > self.best_map:
|
|
|
+ # update best-map
|
|
|
+ self.best_map = cur_map
|
|
|
+ # save model
|
|
|
+ print('Saving state, epoch:', self.epoch + 1)
|
|
|
+ weight_name = '{}_best.pth'.format(self.args.model)
|
|
|
+ checkpoint_path = os.path.join(path_to_save, weight_name)
|
|
|
+ torch.save({'model': model_eval.state_dict(),
|
|
|
+ 'mAP': round(self.best_map*100, 1),
|
|
|
+ 'optimizer': self.optimizer.state_dict(),
|
|
|
+ 'epoch': self.epoch,
|
|
|
+ 'args': self.args},
|
|
|
+ checkpoint_path)
|
|
|
+
|
|
|
+ # set train mode.
|
|
|
+ model_eval.trainable = True
|
|
|
+ model_eval.train()
|
|
|
+
|
|
|
+ if self.args.distributed:
|
|
|
+ # wait for all processes to synchronize
|
|
|
+ dist.barrier()
|
|
|
+
|
|
|
+
|
|
|
+ def refine_targets(self, targets, min_box_size):
|
|
|
+ # rescale targets
|
|
|
+ for tgt in targets:
|
|
|
+ boxes = tgt["boxes"].clone()
|
|
|
+ labels = tgt["labels"].clone()
|
|
|
+ # refine tgt
|
|
|
+ tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
|
|
|
+ min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
|
|
|
+ keep = (min_tgt_size >= min_box_size)
|
|
|
+
|
|
|
+ tgt["boxes"] = boxes[keep]
|
|
|
+ tgt["labels"] = labels[keep]
|
|
|
+
|
|
|
+ return targets
|
|
|
+
|
|
|
+
|
|
|
+ def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
|
|
|
+ """
|
|
|
+ Deployed for Multi scale trick.
|
|
|
+ """
|
|
|
+ if isinstance(stride, int):
|
|
|
+ max_stride = stride
|
|
|
+ elif isinstance(stride, list):
|
|
|
+ max_stride = max(stride)
|
|
|
+
|
|
|
+ # During training phase, the shape of input image is square.
|
|
|
+ old_img_size = images.shape[-1]
|
|
|
+ new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
|
|
|
+ new_img_size = new_img_size // max_stride * max_stride # size
|
|
|
+ if new_img_size / old_img_size != 1:
|
|
|
+ # interpolate
|
|
|
+ images = torch.nn.functional.interpolate(
|
|
|
+ input=images,
|
|
|
+ size=new_img_size,
|
|
|
+ mode='bilinear',
|
|
|
+ align_corners=False)
|
|
|
+ # rescale targets
|
|
|
+ for tgt in targets:
|
|
|
+ boxes = tgt["boxes"].clone()
|
|
|
+ labels = tgt["labels"].clone()
|
|
|
+ boxes = torch.clamp(boxes, 0, old_img_size)
|
|
|
+ # rescale box
|
|
|
+ boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
|
|
|
+ boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
|
|
|
+ # refine tgt
|
|
|
+ tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
|
|
|
+ min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
|
|
|
+ keep = (min_tgt_size >= min_box_size)
|
|
|
+
|
|
|
+ tgt["boxes"] = boxes[keep]
|
|
|
+ tgt["labels"] = labels[keep]
|
|
|
+
|
|
|
+ return images, targets, new_img_size
|
|
|
|
|
|
- return best_map
|