|
|
@@ -72,7 +72,7 @@ python train.py --cuda -d voc --root path/to/VOCdevkit -v yolov1 -bs 16 --max_ep
|
|
|
| YOLOv4 | CSPDarkNet-53 | 640 | √ | 150 | 83.6 | | 162.7 | 61.5 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov4_voc.pth) |
|
|
|
| YOLOv5 | CSPDarkNet-L | 640 | √ | 150 | 83.8 | | 155.6 | 54.2 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov5_voc.pth) |
|
|
|
| YOLOX | CSPDarkNet-L | 640 | √ | 150 | 84.6 | | 155.4 | 54.2 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_voc.pth) |
|
|
|
-| YOLOv7-Large | ELANNet-Large | 640 | √ | 150 | 85.5 | | 144.6 | 44.0 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov7_voc.pth) |
|
|
|
+| YOLOv7-Large | ELANNet-Large | 640 | √ | 150 | 86.0 | | 144.6 | 44.0 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov7_large_voc.pth) |
|
|
|
|
|
|
*All models are trained with ImageNet pretrained weight (IP). All FLOPs are measured with a 640x640 image size on VOC2007 test. The FPS is measured with batch size 1 on 3090 GPU from the model inference to the NMS operation.*
|
|
|
|
|
|
@@ -163,6 +163,19 @@ python test.py -d coco \
|
|
|
--show
|
|
|
```
|
|
|
|
|
|
+For YOLOv7, since it uses the RepConv in PaFPN, you can add `--fuse_repconv` to fuse the RepConv block.
|
|
|
+```Shell
|
|
|
+python test.py -d coco \
|
|
|
+ --cuda \
|
|
|
+ -v yolov7_large \
|
|
|
+ --fuse_repconv \
|
|
|
+ --img_size 640 \
|
|
|
+ --weight path/to/weight \
|
|
|
+ --root path/to/dataset/ \
|
|
|
+ --show
|
|
|
+```
|
|
|
+
|
|
|
+
|
|
|
## Evaluation
|
|
|
```Shell
|
|
|
python eval.py -d coco-val \
|