|
|
@@ -83,53 +83,53 @@ class Conv(nn.Module):
|
|
|
|
|
|
|
|
|
# ---------------------------- Core Modules ----------------------------
|
|
|
+## MultiHeadMixedConv
|
|
|
+class MultiHeadMixedConv(nn.Module):
|
|
|
+ def __init__(self, in_dim, out_dim, num_heads=4, shortcut=False, act_type='silu', norm_type='BN', depthwise=False):
|
|
|
+ super().__init__()
|
|
|
+ # -------------- Basic parameters --------------
|
|
|
+ self.in_dim = in_dim
|
|
|
+ self.out_dim = out_dim
|
|
|
+ self.num_heads = num_heads
|
|
|
+ self.head_dim = in_dim // num_heads
|
|
|
+ self.shortcut = shortcut
|
|
|
+ # -------------- Network parameters --------------
|
|
|
+ ## Scale Modulation
|
|
|
+ self.mixed_convs = nn.ModuleList([
|
|
|
+ Conv(self.head_dim, self.head_dim, k=2*i+1, p=i, act_type=None, norm_type=None, depthwise=depthwise)
|
|
|
+ for i in range(num_heads)])
|
|
|
+ ## Aggregation proj
|
|
|
+ self.out_proj = Conv(self.head_dim*num_heads, out_dim, k=1, act_type=act_type, norm_type=norm_type)
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ xs = torch.chunk(x, self.num_heads, dim=1)
|
|
|
+ ys = [mixed_conv(x_h) for x_h, mixed_conv in zip(xs, self.mixed_convs)]
|
|
|
+ ys = self.out_proj(torch.cat(ys, dim=1))
|
|
|
+
|
|
|
+ return x + ys if self.shortcut else ys
|
|
|
+
|
|
|
+
|
|
|
## Scale Modulation Block
|
|
|
class SMBlock(nn.Module):
|
|
|
- def __init__(self, in_dim, out_dim, act_type='silu', norm_type='BN', depthwise=False):
|
|
|
- super(SMBlock, self).__init__()
|
|
|
+ def __init__(self, in_dim, out_dim, nblocks=1, num_heads=4, shortcut=False, act_type='silu', norm_type='BN', depthwise=False):
|
|
|
+ super().__init__()
|
|
|
# -------------- Basic parameters --------------
|
|
|
self.in_dim = in_dim
|
|
|
+ self.out_dim = out_dim
|
|
|
+ self.nblocks = nblocks
|
|
|
+ self.num_heads = num_heads
|
|
|
+ self.shortcut = shortcut
|
|
|
self.inter_dim = in_dim // 2
|
|
|
# -------------- Network parameters --------------
|
|
|
self.cv1 = Conv(self.inter_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type)
|
|
|
self.cv2 = Conv(self.inter_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type)
|
|
|
## Scale Modulation
|
|
|
- self.sm1 = nn.Sequential(
|
|
|
- Conv(self.inter_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type),
|
|
|
- Conv(self.inter_dim, self.inter_dim, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
|
|
|
- )
|
|
|
- self.sm2 = nn.Sequential(
|
|
|
- Conv(self.inter_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type),
|
|
|
- Conv(self.inter_dim, self.inter_dim, k=5, p=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
|
|
|
- )
|
|
|
- self.sm3 = nn.Sequential(
|
|
|
- Conv(self.inter_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type),
|
|
|
- Conv(self.inter_dim, self.inter_dim, k=7, p=3, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
|
|
|
- )
|
|
|
- ## Aggregation proj
|
|
|
- self.sm_aggregation = Conv(self.inter_dim*3, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type)
|
|
|
-
|
|
|
- # Output proj
|
|
|
- self.out_proj = None
|
|
|
- if in_dim != out_dim:
|
|
|
- self.out_proj = Conv(self.inter_dim*2, out_dim, k=1, act_type=act_type, norm_type=norm_type)
|
|
|
-
|
|
|
-
|
|
|
- def channel_shuffle(self, x, groups):
|
|
|
- # type: (torch.Tensor, int) -> torch.Tensor
|
|
|
- batchsize, num_channels, height, width = x.data.size()
|
|
|
- per_group_dim = num_channels // groups
|
|
|
+ self.smblocks = nn.Sequential(*[
|
|
|
+ MultiHeadMixedConv(self.inter_dim, self.inter_dim, self.num_heads, self.shortcut, act_type, norm_type, depthwise)
|
|
|
+ for _ in range(nblocks)])
|
|
|
+ ## Output proj
|
|
|
+ self.out_proj = Conv(self.inter_dim*2, out_dim, k=1, act_type=act_type, norm_type=norm_type)
|
|
|
|
|
|
- # reshape
|
|
|
- x = x.view(batchsize, groups, per_group_dim, height, width)
|
|
|
-
|
|
|
- x = torch.transpose(x, 1, 2).contiguous()
|
|
|
-
|
|
|
- # flatten
|
|
|
- x = x.view(batchsize, -1, height, width)
|
|
|
-
|
|
|
- return x
|
|
|
-
|
|
|
|
|
|
def forward(self, x):
|
|
|
"""
|
|
|
@@ -142,18 +142,14 @@ class SMBlock(nn.Module):
|
|
|
# branch-1
|
|
|
x1 = self.cv1(x1)
|
|
|
# branch-2
|
|
|
- x2 = self.cv2(x2)
|
|
|
- x2 = torch.cat([self.sm1(x2), self.sm2(x2), self.sm3(x2)], dim=1)
|
|
|
- x2 = self.sm_aggregation(x2)
|
|
|
- # channel shuffle
|
|
|
+ x2 = self.smblocks(x2)
|
|
|
+ # output
|
|
|
out = torch.cat([x1, x2], dim=1)
|
|
|
- out = self.channel_shuffle(out, groups=2)
|
|
|
-
|
|
|
- if self.out_proj:
|
|
|
- out = self.out_proj(out)
|
|
|
+ out = self.out_proj(out)
|
|
|
|
|
|
return out
|
|
|
|
|
|
+
|
|
|
## DownSample Block
|
|
|
class DSBlock(nn.Module):
|
|
|
def __init__(self, in_dim, act_type='silu', norm_type='BN', depthwise=False):
|
|
|
@@ -208,6 +204,9 @@ def build_fpn_block(cfg, in_dim, out_dim):
|
|
|
if cfg['fpn_core_block'] == 'smblock':
|
|
|
layer = SMBlock(in_dim=in_dim,
|
|
|
out_dim=out_dim,
|
|
|
+ nblocks=cfg['fpn_nblocks'],
|
|
|
+ num_heads=cfg['fpn_num_heads'],
|
|
|
+ shortcut=cfg['fpn_shortcut'],
|
|
|
act_type=cfg['fpn_act'],
|
|
|
norm_type=cfg['fpn_norm'],
|
|
|
depthwise=cfg['fpn_depthwise']
|