瀏覽代碼

add YOLOX-Style Trainer

yjh0410 2 年之前
父節點
當前提交
28faf2f1fd
共有 1 個文件被更改,包括 9 次插入9 次删除
  1. 9 9
      README.md

+ 9 - 9
README.md

@@ -141,15 +141,15 @@ python train.py --cuda -d coco --root path/to/COCO -m yolov1 -bs 16 --max_epoch
 
 * My YOLO:
 
-| Model    | Scale | Batch | Epoch | AP<sup>test<br>0.5:0.95 | AP<sup>test<br>0.5 | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
-|----------|-------|-------|-------|-------------------------|--------------------|------------------------|-------------------|-------------------|--------------------|--------|
-| YOLOvx-P |  640  | 4xb32 |  300  |                         |                    |                        |                   |                   |                    |  |
-| YOLOvx-N |  640  | 4xb32 |  300  |                         |                    |                        |                   |                   |                    |  |
-| YOLOvx-T |  640  | 4xb32 |  300  |                         |                    |                        |                   |                   |                    |  |
-| YOLOvx-S |  640  | 4xb32 |  300  |                         |                    |                        |                   |                   |                    |  |
-| YOLOvx-M |  640  | 8xb16 |  300  |                         |                    |                        |                   |                   |                    |  |
-| YOLOvx-L |  640  | 8xb16 |  300  |         50.2            |        68.6        |          50.0          |        68.4       |      176.6        |        47.6        | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolovx_l_coco.pth) |
-| YOLOvx-X |  640  |       |       |                         |                    |                        |                   |                   |                    |  |
+| Model    | Scale | Batch | AP<sup>test<br>0.5:0.95 | AP<sup>test<br>0.5 | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
+|----------|-------|-------|-------------------------|--------------------|------------------------|-------------------|-------------------|--------------------|--------|
+| YOLOvx-P |  640  | 4xb32 |                         |                    |                        |                   |                   |                    |  |
+| YOLOvx-N |  640  | 4xb32 |                         |                    |                        |                   |                   |                    |  |
+| YOLOvx-T |  640  | 4xb32 |                         |                    |                        |                   |                   |                    |  |
+| YOLOvx-S |  640  | 4xb32 |                         |                    |                        |                   |                   |                    |  |
+| YOLOvx-M |  640  | 8xb16 |                         |                    |                        |                   |                   |                    |  |
+| YOLOvx-L |  640  | 8xb16 |         50.2            |        68.6        |          50.0          |        68.4       |      176.6        |        47.6        | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolovx_l_coco.pth) |
+| YOLOvx-X |  640  |       |                         |                    |                        |                   |                   |                    |  |
 
 Due to my limited computing resources, I can not to train `YOLOvx-X` with the setting of `batch size=128`.