|
|
@@ -292,7 +292,7 @@ CustomedDataset
|
|
|
|
|
|
- Step-2: Make the configuration for our dataset.
|
|
|
```Shell
|
|
|
-cd <PyTorch_YOLO_Tutorial_HOME>
|
|
|
+cd <RT-ODLab>
|
|
|
cd config/data_config
|
|
|
```
|
|
|
You need to edit the `dataset_cfg` defined in `dataset_config.py`. You can refer to the `customed` defined in `dataset_cfg` to modify the relevant parameters, such as `num_classes`, `classes_names`, to adapt to our dataset.
|
|
|
@@ -312,7 +312,7 @@ dataset_cfg = {
|
|
|
- Step-3: Convert customed to COCO format.
|
|
|
|
|
|
```Shell
|
|
|
-cd <PyTorch_YOLO_Tutorial_HOME>
|
|
|
+cd <RT-ODLab>
|
|
|
cd tools
|
|
|
# convert train split
|
|
|
python convert_ours_to_coco.py --root path/to/dataset/ --split train
|
|
|
@@ -348,7 +348,7 @@ CustomedDataset
|
|
|
- Step-4 Check the data.
|
|
|
|
|
|
```Shell
|
|
|
-cd <PyTorch_YOLO_Tutorial_HOME>
|
|
|
+cd <RT-ODLab>
|
|
|
cd dataset
|
|
|
# convert train split
|
|
|
python customed.py --root path/to/dataset/ --split train
|
|
|
@@ -361,7 +361,7 @@ python customed.py --root path/to/dataset/ --split val
|
|
|
For example:
|
|
|
|
|
|
```Shell
|
|
|
-cd <PyTorch_YOLO_Tutorial_HOME>
|
|
|
+cd <RT-ODLab>
|
|
|
python train.py --root path/to/dataset/ -d customed -m yolov1 -bs 16 --max_epoch 100 --wp_epoch 1 --eval_epoch 5 -p path/to/yolov1_coco.pth
|
|
|
```
|
|
|
|
|
|
@@ -370,7 +370,7 @@ python train.py --root path/to/dataset/ -d customed -m yolov1 -bs 16 --max_epoch
|
|
|
For example:
|
|
|
|
|
|
```Shell
|
|
|
-cd <PyTorch_YOLO_Tutorial_HOME>
|
|
|
+cd <RT-ODLab>
|
|
|
python test.py --root path/to/dataset/ -d customed -m yolov1 --weight path/to/checkpoint --show
|
|
|
```
|
|
|
|
|
|
@@ -379,7 +379,7 @@ python test.py --root path/to/dataset/ -d customed -m yolov1 --weight path/to/ch
|
|
|
For example:
|
|
|
|
|
|
```Shell
|
|
|
-cd <PyTorch_YOLO_Tutorial_HOME>
|
|
|
+cd <RT-ODLab>
|
|
|
python eval.py --root path/to/dataset/ -d customed -m yolov1 --weight path/to/checkpoint
|
|
|
```
|
|
|
|