|
|
@@ -7,16 +7,18 @@ import torch.nn.functional as F
|
|
|
# Single-level pred layer
|
|
|
class SingleLevelPredLayer(nn.Module):
|
|
|
def __init__(self,
|
|
|
- cls_dim :int = 256,
|
|
|
- reg_dim :int = 256,
|
|
|
- stride :int = 32,
|
|
|
- num_classes :int = 80,
|
|
|
- num_coords :int = 4):
|
|
|
+ cls_dim :int = 256,
|
|
|
+ reg_dim :int = 256,
|
|
|
+ stride :int = 32,
|
|
|
+ reg_max :int = 16,
|
|
|
+ num_classes :int = 80,
|
|
|
+ num_coords :int = 4):
|
|
|
super().__init__()
|
|
|
# --------- Basic Parameters ----------
|
|
|
self.stride = stride
|
|
|
self.cls_dim = cls_dim
|
|
|
self.reg_dim = reg_dim
|
|
|
+ self.reg_max = reg_max
|
|
|
self.num_classes = num_classes
|
|
|
self.num_coords = num_coords
|
|
|
|
|
|
@@ -36,19 +38,57 @@ class SingleLevelPredLayer(nn.Module):
|
|
|
b.data.fill_(1.0)
|
|
|
self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
|
|
|
|
|
- def forward(self, cls_feat, reg_feat):
|
|
|
+ def generate_anchors(self, fmp_size):
|
|
|
"""
|
|
|
- in_feats: (Tensor) [B, C, H, W]
|
|
|
+ fmp_size: (List) [H, W]
|
|
|
"""
|
|
|
+ # generate grid cells
|
|
|
+ fmp_h, fmp_w = fmp_size
|
|
|
+ anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
|
|
|
+ # [H, W, 2] -> [HW, 2]
|
|
|
+ anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
|
|
|
+ anchors += 0.5 # add center offset
|
|
|
+ anchors *= self.stride
|
|
|
+
|
|
|
+ return anchors
|
|
|
+
|
|
|
+ def forward(self, cls_feat, reg_feat):
|
|
|
+ # pred
|
|
|
cls_pred = self.cls_pred(cls_feat)
|
|
|
reg_pred = self.reg_pred(reg_feat)
|
|
|
|
|
|
- return cls_pred, reg_pred
|
|
|
-
|
|
|
+ # generate anchor boxes: [M, 4]
|
|
|
+ B, _, H, W = cls_pred.size()
|
|
|
+ fmp_size = [H, W]
|
|
|
+ anchors = self.generate_anchors(fmp_size)
|
|
|
+ anchors = anchors.to(cls_pred.device)
|
|
|
+ # stride tensor: [M, 1]
|
|
|
+ stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride
|
|
|
+
|
|
|
+ # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
|
|
|
+ cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
|
|
|
+ reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.reg_max)
|
|
|
+
|
|
|
+ # output dict
|
|
|
+ outputs = {"pred_cls": cls_pred, # List(Tensor) [B, M, C]
|
|
|
+ "pred_reg": reg_pred, # List(Tensor) [B, M, 4*(reg_max)]
|
|
|
+ "anchors": anchors, # List(Tensor) [M, 2]
|
|
|
+ "strides": self.stride, # List(Int) = [8, 16, 32]
|
|
|
+ "stride_tensor": stride_tensor # List(Tensor) [M, 1]
|
|
|
+ }
|
|
|
+
|
|
|
+ return outputs
|
|
|
|
|
|
# Multi-level pred layer
|
|
|
class MultiLevelPredLayer(nn.Module):
|
|
|
- def __init__(self, cls_dim, reg_dim, strides, num_classes, num_coords=4, num_levels=3, reg_max=16):
|
|
|
+ def __init__(self,
|
|
|
+ cls_dim,
|
|
|
+ reg_dim,
|
|
|
+ strides,
|
|
|
+ num_classes :int = 80,
|
|
|
+ num_coords :int = 4,
|
|
|
+ num_levels :int = 3,
|
|
|
+ reg_max :int = 16):
|
|
|
super().__init__()
|
|
|
# --------- Basic Parameters ----------
|
|
|
self.cls_dim = cls_dim
|
|
|
@@ -65,6 +105,7 @@ class MultiLevelPredLayer(nn.Module):
|
|
|
[SingleLevelPredLayer(cls_dim = cls_dim,
|
|
|
reg_dim = reg_dim,
|
|
|
stride = strides[level],
|
|
|
+ reg_max = reg_max,
|
|
|
num_classes = num_classes,
|
|
|
num_coords = num_coords * reg_max)
|
|
|
for level in range(num_levels)
|
|
|
@@ -74,20 +115,6 @@ class MultiLevelPredLayer(nn.Module):
|
|
|
self.proj_conv = nn.Conv2d(self.reg_max, 1, kernel_size=1, bias=False).requires_grad_(False)
|
|
|
self.proj_conv.weight.data[:] = nn.Parameter(proj_init.view([1, reg_max, 1, 1]))
|
|
|
|
|
|
- def generate_anchors(self, level, fmp_size):
|
|
|
- """
|
|
|
- fmp_size: (List) [H, W]
|
|
|
- """
|
|
|
- # generate grid cells
|
|
|
- fmp_h, fmp_w = fmp_size
|
|
|
- anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
|
|
|
- # [H, W, 2] -> [HW, 2]
|
|
|
- anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
|
|
|
- anchors += 0.5 # add center offset
|
|
|
- anchors *= self.strides[level]
|
|
|
-
|
|
|
- return anchors
|
|
|
-
|
|
|
def forward(self, cls_feats, reg_feats):
|
|
|
all_anchors = []
|
|
|
all_strides = []
|
|
|
@@ -96,25 +123,13 @@ class MultiLevelPredLayer(nn.Module):
|
|
|
all_box_preds = []
|
|
|
all_delta_preds = []
|
|
|
for level in range(self.num_levels):
|
|
|
- # pred
|
|
|
- cls_pred, reg_pred = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
|
|
|
-
|
|
|
- # generate anchor boxes: [M, 4]
|
|
|
- B, _, H, W = cls_pred.size()
|
|
|
- fmp_size = [H, W]
|
|
|
- anchors = self.generate_anchors(level, fmp_size)
|
|
|
- anchors = anchors.to(cls_pred.device)
|
|
|
- # stride tensor: [M, 1]
|
|
|
- stride_tensor = torch.ones_like(anchors[..., :1]) * self.strides[level]
|
|
|
-
|
|
|
- # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
|
|
|
- cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
|
|
|
- reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.reg_max)
|
|
|
-
|
|
|
- # ----------------------- Decode bbox -----------------------
|
|
|
- B, M = reg_pred.shape[:2]
|
|
|
+ # -------------- Single-level prediction --------------
|
|
|
+ outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
|
|
|
+
|
|
|
+ # -------------- Decode bbox --------------
|
|
|
+ B, M = outputs["pred_reg"].shape[:2]
|
|
|
# [B, M, 4*(reg_max)] -> [B, M, 4, reg_max]
|
|
|
- delta_pred = reg_pred.reshape([B, M, 4, self.reg_max])
|
|
|
+ delta_pred = outputs["pred_reg"].reshape([B, M, 4, self.reg_max])
|
|
|
# [B, M, 4, reg_max] -> [B, reg_max, 4, M]
|
|
|
delta_pred = delta_pred.permute(0, 3, 2, 1).contiguous()
|
|
|
# [B, reg_max, 4, M] -> [B, 1, 4, M]
|
|
|
@@ -122,16 +137,16 @@ class MultiLevelPredLayer(nn.Module):
|
|
|
# [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
|
|
|
delta_pred = delta_pred.view(B, 4, M).permute(0, 2, 1).contiguous()
|
|
|
## tlbr -> xyxy
|
|
|
- x1y1_pred = anchors[None] - delta_pred[..., :2] * self.strides[level]
|
|
|
- x2y2_pred = anchors[None] + delta_pred[..., 2:] * self.strides[level]
|
|
|
+ x1y1_pred = outputs["anchors"][None] - delta_pred[..., :2] * self.strides[level]
|
|
|
+ x2y2_pred = outputs["anchors"][None] + delta_pred[..., 2:] * self.strides[level]
|
|
|
box_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1)
|
|
|
|
|
|
- all_cls_preds.append(cls_pred)
|
|
|
- all_reg_preds.append(reg_pred)
|
|
|
+ all_cls_preds.append(outputs["pred_cls"])
|
|
|
+ all_reg_preds.append(outputs["pred_reg"])
|
|
|
all_box_preds.append(box_pred)
|
|
|
all_delta_preds.append(delta_pred)
|
|
|
- all_anchors.append(anchors)
|
|
|
- all_strides.append(stride_tensor)
|
|
|
+ all_anchors.append(outputs["anchors"])
|
|
|
+ all_strides.append(outputs["stride_tensor"])
|
|
|
|
|
|
# output dict
|
|
|
outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
|