|
@@ -86,6 +86,24 @@ class YOLOvx(nn.Module):
|
|
|
|
|
|
|
|
return anchors
|
|
return anchors
|
|
|
|
|
|
|
|
|
|
+ ## decode bbox
|
|
|
|
|
+ def decode_bbox(self, reg_pred, anchors, stride):
|
|
|
|
|
+ B, M = reg_pred.shape[:2]
|
|
|
|
|
+ # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max] -> [B, 4, M, reg_max]
|
|
|
|
|
+ reg_pred = reg_pred.reshape([B, M, 4, self.reg_max])
|
|
|
|
|
+ # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
|
|
|
|
|
+ reg_pred = reg_pred.permute(0, 3, 2, 1).contiguous()
|
|
|
|
|
+ # [B, reg_max, 4, M] -> [B, 1, 4, M]
|
|
|
|
|
+ reg_pred = self.proj_conv(F.softmax(reg_pred, dim=1))
|
|
|
|
|
+ # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
|
|
|
|
|
+ reg_pred = reg_pred.view(B, 4, M).permute(0, 2, 1).contiguous()
|
|
|
|
|
+ ## tlbr -> xyxy
|
|
|
|
|
+ x1y1_pred = anchors[None] - reg_pred[..., :2] * stride
|
|
|
|
|
+ x2y2_pred = anchors[None] + reg_pred[..., 2:] * stride
|
|
|
|
|
+ box_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1)
|
|
|
|
|
+
|
|
|
|
|
+ return box_pred
|
|
|
|
|
+
|
|
|
## post-process
|
|
## post-process
|
|
|
def post_process(self, cls_preds, box_preds):
|
|
def post_process(self, cls_preds, box_preds):
|
|
|
"""
|
|
"""
|
|
@@ -169,21 +187,7 @@ class YOLOvx(nn.Module):
|
|
|
# process preds
|
|
# process preds
|
|
|
cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
|
|
cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
|
|
|
reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.reg_max)
|
|
reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.reg_max)
|
|
|
-
|
|
|
|
|
- # ----------------------- Decode bbox -----------------------
|
|
|
|
|
- B, M = reg_pred.shape[:2]
|
|
|
|
|
- # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max] -> [B, 4, M, reg_max]
|
|
|
|
|
- reg_pred = reg_pred.reshape([B, M, 4, self.reg_max])
|
|
|
|
|
- # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
|
|
|
|
|
- reg_pred = reg_pred.permute(0, 3, 2, 1).contiguous()
|
|
|
|
|
- # [B, reg_max, 4, M] -> [B, 1, 4, M]
|
|
|
|
|
- reg_pred = self.proj_conv(F.softmax(reg_pred, dim=1))
|
|
|
|
|
- # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
|
|
|
|
|
- reg_pred = reg_pred.view(B, 4, M).permute(0, 2, 1).contiguous()
|
|
|
|
|
- ## tlbr -> xyxy
|
|
|
|
|
- x1y1_pred = anchors[None] - reg_pred[..., :2] * self.stride[level]
|
|
|
|
|
- x2y2_pred = anchors[None] + reg_pred[..., 2:] * self.stride[level]
|
|
|
|
|
- box_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1)
|
|
|
|
|
|
|
+ box_pred = self.decode_bbox(reg_pred, anchors, self.stride[level])
|
|
|
|
|
|
|
|
# collect preds
|
|
# collect preds
|
|
|
all_cls_preds.append(cls_pred[0])
|
|
all_cls_preds.append(cls_pred[0])
|
|
@@ -229,34 +233,19 @@ class YOLOvx(nn.Module):
|
|
|
all_reg_preds = []
|
|
all_reg_preds = []
|
|
|
all_box_preds = []
|
|
all_box_preds = []
|
|
|
for level, (cls_feat, reg_feat) in enumerate(zip(cls_feats, reg_feats)):
|
|
for level, (cls_feat, reg_feat) in enumerate(zip(cls_feats, reg_feats)):
|
|
|
|
|
+ # anchors & stride tensor
|
|
|
|
|
+ B, _, H, W = cls_feat.size()
|
|
|
|
|
+ anchors = self.generate_anchors(level, [H, W]) # [M, 4]
|
|
|
|
|
+ stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride[level] # [M, 1]
|
|
|
|
|
+
|
|
|
# prediction
|
|
# prediction
|
|
|
cls_pred = self.cls_preds[level](cls_feat)
|
|
cls_pred = self.cls_preds[level](cls_feat)
|
|
|
reg_pred = self.reg_preds[level](reg_feat)
|
|
reg_pred = self.reg_preds[level](reg_feat)
|
|
|
|
|
|
|
|
- B, _, H, W = cls_pred.size()
|
|
|
|
|
- # generate anchor boxes: [M, 4]
|
|
|
|
|
- anchors = self.generate_anchors(level, [H, W])
|
|
|
|
|
- # stride tensor: [M, 1]
|
|
|
|
|
- stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride[level]
|
|
|
|
|
-
|
|
|
|
|
# process preds
|
|
# process preds
|
|
|
cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
|
|
cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
|
|
|
reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.reg_max)
|
|
reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.reg_max)
|
|
|
-
|
|
|
|
|
- # ----------------------- Decode bbox -----------------------
|
|
|
|
|
- B, M = reg_pred.shape[:2]
|
|
|
|
|
- # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max] -> [B, 4, M, reg_max]
|
|
|
|
|
- reg_pred_ = reg_pred.reshape([B, M, 4, self.reg_max])
|
|
|
|
|
- # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
|
|
|
|
|
- reg_pred_ = reg_pred_.permute(0, 3, 2, 1).contiguous()
|
|
|
|
|
- # [B, reg_max, 4, M] -> [B, 1, 4, M]
|
|
|
|
|
- reg_pred_ = self.proj_conv(F.softmax(reg_pred_, dim=1))
|
|
|
|
|
- # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
|
|
|
|
|
- reg_pred_ = reg_pred_.view(B, 4, M).permute(0, 2, 1).contiguous()
|
|
|
|
|
- ## tlbr -> xyxy
|
|
|
|
|
- x1y1_pred = anchors[None] - reg_pred_[..., :2] * self.stride[level]
|
|
|
|
|
- x2y2_pred = anchors[None] + reg_pred_[..., 2:] * self.stride[level]
|
|
|
|
|
- box_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1)
|
|
|
|
|
|
|
+ box_pred = self.decode_bbox(reg_pred, anchors, self.stride[level])
|
|
|
|
|
|
|
|
# collect preds
|
|
# collect preds
|
|
|
all_cls_preds.append(cls_pred)
|
|
all_cls_preds.append(cls_pred)
|