|
|
@@ -109,12 +109,10 @@ python train.py --cuda -d coco --root path/to/COCO -v yolov1 -bs 16 --max_epoch
|
|
|
| YOLOv7-Nano | ELANNet-Nano | 640 | √ | 300 | | | | |
|
|
|
| YOLOv7-Tiny | ELANNet-Tiny | 640 | √ | 300 | | | | |
|
|
|
| YOLOv7-Large | ELANNet-Large | 640 | √ | 300 | | | | |
|
|
|
-| YOLOv7-Huge | ELANNet-Huge | 640 | √ | 300 | | | | |
|
|
|
| YOLOv8-Nano | CSP-ELANNet-Nano | 640 | √ | 300 | | | | |
|
|
|
| YOLOv8-Small | CSP-ELANNet-Small | 640 | √ | 300 | | | | |
|
|
|
| YOLOv8-Medium | CSP-ELANNet-Medium | 640 | √ | 300 | | | | |
|
|
|
| YOLOv8-Large | CSP-ELANNet-Large | 640 | √ | 300 | | | | |
|
|
|
-| YOLOv8-Huge | CSP-ELANNet-Huge | 640 | √ | 300 | | | | |
|
|
|
|
|
|
*All models are trained with ImageNet pretrained weight (IP). All FLOPs are measured with a 640x640 image size on COCO val2017. The FPS is measured with batch size 1 on 3090 GPU from the model inference to the NMS operation.*
|
|
|
|