|
|
@@ -87,13 +87,6 @@ For example:
|
|
|
python train.py --cuda -d coco --root path/to/COCO -m yolov1 -bs 16 --max_epoch 150 --wp_epoch 1 --eval_epoch 10 --fp16 --ema --multi_scale
|
|
|
```
|
|
|
|
|
|
-#### Redesigned YOLOv1~v2:
|
|
|
-
|
|
|
-| Model | Backbone | Batch | Scale | Epoch | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
-|--------|------------|-------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|
|
|
|
-| YOLOv1 | ResNet-18 | 1xb16 | 640 | 150 | 27.9 | 47.5 | 37.8 | 21.3 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov1_coco.pth) |
|
|
|
-| YOLOv2 | DarkNet-19 | 1xb16 | 640 | 150 | 32.7 | 50.9 | 53.9 | 30.9 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov2_coco.pth) |
|
|
|
-
|
|
|
#### YOLOv3:
|
|
|
|
|
|
| Model | Backbone | Batch | Scale | Epoch | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
@@ -124,8 +117,8 @@ python train.py --cuda -d coco --root path/to/COCO -m yolov1 -bs 16 --max_epoch
|
|
|
| Model | Backbone | Batch | Scale | Epoch | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
|---------|---------------|-------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|
|
|
|
| YOLOX-N | CSPDarkNet-N | 8xb8 | 640 | 300 | 30.4 | 48.9 | 7.5 | 2.3 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_n_coco.pth) |
|
|
|
-| YOLOX-S | CSPDarkNet-S | 8xb8 | 300 | 39.0 | 58.8 | 26.8 | 8.9 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_s_coco.pth) |
|
|
|
-| YOLOX-M | CSPDarkNet-M | 1xb16 | 300 | 44.6 | 63.8 | 74.3 | 25.4 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_m_coco.pth) |
|
|
|
+| YOLOX-S | CSPDarkNet-S | 8xb8 | 640 | 300 | 39.0 | 58.8 | 26.8 | 8.9 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_s_coco.pth) |
|
|
|
+| YOLOX-M | CSPDarkNet-M | 1xb16 | 640 | 300 | 44.6 | 63.8 | 74.3 | 25.4 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_m_coco.pth) |
|
|
|
| YOLOX-L | CSPDarkNet-L | 1xb16 | 640 | 300 | 46.9 | 65.9 | 155.4 | 54.2 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_l_coco.pth) |
|
|
|
|
|
|
*For **YOLOX-M** and **YOLOX-L**, increasing the batch size may improve performance. Due to my computing resources, I can only set the batch size to 16.*
|