|
|
@@ -2,19 +2,19 @@
|
|
|
|
|
|
| Model | Scale | Batch | AP<sup>test<br>0.5:0.95 | AP<sup>test<br>0.5 | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
|------------|-------|-------|-------------------------|--------------------|------------------------|-------------------|-------------------|--------------------|--------|
|
|
|
-| RTCDetv2-N | 640 | 8xb16 | | | | | | | |
|
|
|
-| RTCDetv2-T | 640 | 8xb16 | | | | | | | |
|
|
|
-| RTCDetv2-S | 640 | 8xb16 | | | | | | | |
|
|
|
-| RTCDetv2-M | 640 | 8xb16 | | | | | | | |
|
|
|
-| RTCDetv2-L | 640 | 8xb16 | | | | | | | |
|
|
|
+| RTCDetv2-N | 640 | 4xb16 | | | | | | | |
|
|
|
+| RTCDetv2-T | 640 | 4xb16 | | | | | | | |
|
|
|
+| RTCDetv2-S | 640 | 4xb16 | | | | | | | |
|
|
|
+| RTCDetv2-M | 640 | 4xb16 | | | | | | | |
|
|
|
+| RTCDetv2-L | 640 | 4xb16 | | | | | | | |
|
|
|
| RTCDetv2-X | 640 | | | | | | | | |
|
|
|
|
|
|
| Model | Scale | Batch | AP<sup>test<br>0.5:0.95 | AP<sup>test<br>0.5 | AP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | FLOPs<br><sup>(G) | Params<br><sup>(M) | Weight |
|
|
|
|------------|-------|-------|-------------------------|--------------------|------------------------|-------------------|-------------------|--------------------|--------|
|
|
|
-| RTCDetv2-P | 320 | 8xb16 | | | | | | | |
|
|
|
-| RTCDetv2-P | 416 | 8xb16 | | | | | | | |
|
|
|
-| RTCDetv2-P | 512 | 8xb16 | | | | | | | |
|
|
|
-| RTCDetv2-P | 640 | 8xb16 | | | | | | | |
|
|
|
+| RTCDetv2-P | 320 | 4xb16 | | | | | | | |
|
|
|
+| RTCDetv2-P | 416 | 4xb16 | | | | | | | |
|
|
|
+| RTCDetv2-P | 512 | 4xb16 | | | | | | | |
|
|
|
+| RTCDetv2-P | 640 | 4xb16 | | | | | | | |
|
|
|
|
|
|
- For training, we train my RTCDetv2 series series with 300 epochs on COCO.
|
|
|
- For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation, following the setting of [YOLOX](https://github.com/ultralytics/yolov5), but we remove the rotation transformation which is used in YOLOX's strong augmentation.
|