瀏覽代碼

modify RT-PlainDETR's Trainer

yjh0410 1 年之前
父節點
當前提交
041aba5fc4
共有 2 個文件被更改,包括 1 次插入362 次删除
  1. 0 361
      engine.py
  2. 1 1
      train.py

+ 0 - 361
engine.py

@@ -1599,367 +1599,6 @@ class RTPDetrTrainer(RTDetrTrainer):
             self.lr_scheduler.step()
         
 
-# ## Real-time PlainDETR Trainer
-# class RTPDetrTrainer(object):
-#     def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
-#         # ------------------- Basic parameters -------------------
-#         self.args = args
-#         self.epoch = 0
-#         self.best_map = -1.
-#         self.device = device
-#         self.criterion = criterion
-#         self.world_size = world_size
-#         self.grad_accumulate = args.grad_accumulate
-#         self.clip_grad = 0.1
-#         self.heavy_eval = False
-#         # close AMP for RT-DETR
-#         self.args.fp16 = False
-#         # weak augmentatino stage
-#         self.second_stage = False
-#         self.second_stage_epoch = -1
-#         # path to save model
-#         self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
-#         os.makedirs(self.path_to_save, exist_ok=True)
-
-#         # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
-#         self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 1e-4, 'lr0': 0.0001, 'backbone_lr_ratio': 0.1}
-#         self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.1, 'warmup_iters': 2000} # no lr decay
-#         self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
-
-#         # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
-#         self.data_cfg  = data_cfg
-#         self.model_cfg = model_cfg
-#         self.trans_cfg = trans_cfg
-
-#         # ---------------------------- Build Transform ----------------------------
-#         self.train_transform, self.trans_cfg = build_transform(
-#             args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
-#         self.val_transform, _ = build_transform(
-#             args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
-#         if self.trans_cfg["mosaic_prob"] > 0.5:
-#             self.second_stage_epoch = 5
-
-#         # ---------------------------- Build Dataset & Dataloader ----------------------------
-#         self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
-#         self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
-
-#         # ---------------------------- Build Evaluator ----------------------------
-#         self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
-
-#         # ---------------------------- Build Grad. Scaler ----------------------------
-#         self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
-
-#         # ---------------------------- Build Optimizer ----------------------------
-#         self.optimizer_dict['lr0'] *= self.args.batch_size / 16.  # auto lr scaling
-#         self.optimizer, self.start_epoch = build_rtdetr_optimizer(self.optimizer_dict, model, self.args.resume)
-
-#         # ---------------------------- Build LR Scheduler ----------------------------
-#         self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
-#         self.lr_scheduler.last_epoch = self.start_epoch - 1  # do not move
-#         if self.args.resume and self.args.resume != 'None':
-#             self.lr_scheduler.step()
-
-#         # ---------------------------- Build Model-EMA ----------------------------
-#         if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
-#             print('Build ModelEMA ...')
-#             self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
-#         else:
-#             self.model_ema = None
-
-#     def train(self, model):
-#         for epoch in range(self.start_epoch, self.args.max_epoch):
-#             if self.args.distributed:
-#                 self.train_loader.batch_sampler.sampler.set_epoch(epoch)
-
-#             # check second stage
-#             if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
-#                 self.check_second_stage()
-#                 # save model of the last mosaic epoch
-#                 weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
-#                 checkpoint_path = os.path.join(self.path_to_save, weight_name)
-#                 print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
-#                 torch.save({'model': model.state_dict(),
-#                             'mAP': round(self.evaluator.map*100, 1),
-#                             'optimizer': self.optimizer.state_dict(),
-#                             'epoch': self.epoch,
-#                             'args': self.args}, 
-#                             checkpoint_path)
-
-#             # train one epoch
-#             self.epoch = epoch
-#             self.train_one_epoch(model)
-
-#             # eval one epoch
-#             if self.heavy_eval:
-#                 model_eval = model.module if self.args.distributed else model
-#                 self.eval(model_eval)
-#             else:
-#                 model_eval = model.module if self.args.distributed else model
-#                 if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
-#                     self.eval(model_eval)
-
-#             if self.args.debug:
-#                 print("For debug mode, we only train 1 epoch")
-#                 break
-
-#     def eval(self, model):
-#         # chech model
-#         model_eval = model if self.model_ema is None else self.model_ema.ema
-
-#         if distributed_utils.is_main_process():
-#             # check evaluator
-#             if self.evaluator is None:
-#                 print('No evaluator ... save model and go on training.')
-#                 print('Saving state, epoch: {}'.format(self.epoch))
-#                 weight_name = '{}_no_eval.pth'.format(self.args.model)
-#                 checkpoint_path = os.path.join(self.path_to_save, weight_name)
-#                 torch.save({'model': model_eval.state_dict(),
-#                             'mAP': -1.,
-#                             'optimizer': self.optimizer.state_dict(),
-#                             'epoch': self.epoch,
-#                             'args': self.args}, 
-#                             checkpoint_path)               
-#             else:
-#                 print('eval ...')
-#                 # set eval mode
-#                 model_eval.eval()
-
-#                 # evaluate
-#                 with torch.no_grad():
-#                     self.evaluator.evaluate(model_eval)
-
-#                 # save model
-#                 cur_map = self.evaluator.map
-#                 if cur_map > self.best_map:
-#                     # update best-map
-#                     self.best_map = cur_map
-#                     # save model
-#                     print('Saving state, epoch:', self.epoch)
-#                     weight_name = '{}_best.pth'.format(self.args.model)
-#                     checkpoint_path = os.path.join(self.path_to_save, weight_name)
-#                     torch.save({'model': model_eval.state_dict(),
-#                                 'mAP': round(self.best_map*100, 1),
-#                                 'optimizer': self.optimizer.state_dict(),
-#                                 'epoch': self.epoch,
-#                                 'args': self.args}, 
-#                                 checkpoint_path)                      
-
-#                 # set train mode.
-#                 model_eval.train()
-
-#         if self.args.distributed:
-#             # wait for all processes to synchronize
-#             dist.barrier()
-
-#     def train_one_epoch(self, model):
-#         metric_logger = MetricLogger(delimiter="  ")
-#         metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
-#         metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
-#         metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
-#         header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
-#         epoch_size = len(self.train_loader)
-#         print_freq = 10
-
-#         # basic parameters
-#         epoch_size = len(self.train_loader)
-#         img_size = self.args.img_size
-#         nw = self.lr_schedule_dict['warmup_iters']
-
-#         # Train one epoch
-#         for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
-#             ni = iter_i + self.epoch * epoch_size
-#             # Warmup
-#             if ni <= nw:
-#                 xi = [0, nw]  # x interp
-#                 for x in self.optimizer.param_groups:
-#                     x['lr'] = np.interp(ni, xi, [0.0, x['initial_lr'] * self.lf(self.epoch)])
-                                
-#             # To device
-#             images = images.to(self.device, non_blocking=True).float()
-
-#             # Multi scale
-#             if self.args.multi_scale:
-#                 images, targets, img_size = self.rescale_image_targets(
-#                     images, targets, self.model_cfg['max_stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
-#             else:
-#                 targets = self.refine_targets(targets, self.args.min_box_size)
-
-#             # xyxy -> cxcywh
-#             targets = self.box_xyxy_to_cxcywh(targets)
-                
-#             # Visualize train targets
-#             if self.args.vis_tgt:
-#                 targets = self.box_cxcywh_to_xyxy(targets)
-#                 vis_data(images, targets, pixel_mean=self.trans_cfg['pixel_mean'], pixel_std=self.trans_cfg['pixel_std'])
-#                 targets = self.box_xyxy_to_cxcywh(targets)
-
-#             # Inference
-#             with torch.cuda.amp.autocast(enabled=self.args.fp16):
-#                 outputs = model(images)
-#                 # Compute loss
-#                 loss_dict = self.criterion(outputs, targets)
-#                 loss_weight_dict = self.criterion.weight_dict
-#                 losses = sum(loss_dict[k] * loss_weight_dict[k] for k in loss_dict.keys() if k in loss_weight_dict)
-
-#                 # Grad Accumulate
-#                 if self.grad_accumulate > 1:
-#                     losses /= self.grad_accumulate
-
-#                 # Reduce losses over all GPUs for logging purposes
-#                 loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
-#                 loss_dict_reduced_scaled = {k: v * loss_weight_dict[k] for k, v in loss_dict_reduced.items() if k in loss_weight_dict}
-#                 losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
-#                 loss_value = losses_reduced_scaled.item()
-
-#             # Backward
-#             self.scaler.scale(losses).backward()
-
-#             # Optimize
-#             if ni % self.grad_accumulate == 0:
-#                 grad_norm = None
-#                 if self.clip_grad > 0:
-#                     # unscale gradients
-#                     self.scaler.unscale_(self.optimizer)
-#                     # clip gradients
-#                     grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
-#                 # optimizer.step
-#                 self.scaler.step(self.optimizer)
-#                 self.scaler.update()
-#                 self.optimizer.zero_grad()
-#                 # ema
-#                 if self.model_ema is not None:
-#                     self.model_ema.update(model)
-
-#             # Update log
-#             metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled)
-#             metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
-#             metric_logger.update(grad_norm=grad_norm)
-#             metric_logger.update(size=img_size)
-
-#             if self.args.debug:
-#                 print("For debug mode, we only train 1 iteration")
-#                 break
-
-#         # LR Schedule
-#         if not self.second_stage:
-#             self.lr_scheduler.step()
-        
-#     def refine_targets(self, targets, min_box_size):
-#         # rescale targets
-#         for tgt in targets:
-#             boxes = tgt["boxes"].clone()
-#             labels = tgt["labels"].clone()
-#             # refine tgt
-#             tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
-#             min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
-#             keep = (min_tgt_size >= min_box_size)
-
-#             tgt["boxes"] = boxes[keep]
-#             tgt["labels"] = labels[keep]
-        
-#         return targets
-
-#     def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
-#         """
-#             Deployed for Multi scale trick.
-#         """
-#         if isinstance(stride, int):
-#             max_stride = stride
-#         elif isinstance(stride, list):
-#             max_stride = max(stride)
-
-#         # During training phase, the shape of input image is square.
-#         old_img_size = images.shape[-1]
-#         new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
-#         new_img_size = new_img_size // max_stride * max_stride  # size
-#         if new_img_size / old_img_size != 1:
-#             # interpolate
-#             images = torch.nn.functional.interpolate(
-#                                 input=images, 
-#                                 size=new_img_size, 
-#                                 mode='bilinear', 
-#                                 align_corners=False)
-#         # rescale targets
-#         for tgt in targets:
-#             boxes = tgt["boxes"].clone()
-#             labels = tgt["labels"].clone()
-#             boxes = torch.clamp(boxes, 0, old_img_size)
-#             # rescale box
-#             boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
-#             boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
-#             # refine tgt
-#             tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
-#             min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
-#             keep = (min_tgt_size >= min_box_size)
-
-#             tgt["boxes"] = boxes[keep]
-#             tgt["labels"] = labels[keep]
-
-#         return images, targets, new_img_size
-
-#     def box_xyxy_to_cxcywh(self, targets):
-#         # rescale targets
-#         for tgt in targets:
-#             boxes_xyxy = tgt["boxes"].clone()
-#             # rescale box
-#             cxcy = (boxes_xyxy[..., :2] + boxes_xyxy[..., 2:]) * 0.5
-#             bwbh = boxes_xyxy[..., 2:] - boxes_xyxy[..., :2]
-#             boxes_bwbh = torch.cat([cxcy, bwbh], dim=-1)
-
-#             tgt["boxes"] = boxes_bwbh
-
-#         return targets
-
-#     def box_cxcywh_to_xyxy(self, targets):
-#         # rescale targets
-#         for tgt in targets:
-#             boxes_cxcywh = tgt["boxes"].clone()
-#             # rescale box
-#             x1y1 = boxes_cxcywh[..., :2] - boxes_cxcywh[..., 2:] * 0.5
-#             x2y2 = boxes_cxcywh[..., :2] + boxes_cxcywh[..., 2:] * 0.5
-#             boxes_bwbh = torch.cat([x1y1, x2y2], dim=-1)
-
-#             tgt["boxes"] = boxes_bwbh
-
-#         return targets
-
-#     def check_second_stage(self):
-#         # set second stage
-#         print('============== Second stage of Training ==============')
-#         self.second_stage = True
-
-#         # close mosaic augmentation
-#         if self.train_loader.dataset.mosaic_prob > 0.:
-#             print(' - Close < Mosaic Augmentation > ...')
-#             self.train_loader.dataset.mosaic_prob = 0.
-#             self.heavy_eval = True
-
-#         # close mixup augmentation
-#         if self.train_loader.dataset.mixup_prob > 0.:
-#             print(' - Close < Mixup Augmentation > ...')
-#             self.train_loader.dataset.mixup_prob = 0.
-#             self.heavy_eval = True
-
-#         # close rotation augmentation
-#         if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
-#             print(' - Close < degress of rotation > ...')
-#             self.trans_cfg['degrees'] = 0.0
-#         if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
-#             print(' - Close < shear of rotation >...')
-#             self.trans_cfg['shear'] = 0.0
-#         if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
-#             print(' - Close < perspective of rotation > ...')
-#             self.trans_cfg['perspective'] = 0.0
-
-#         # build a new transform for second stage
-#         print(' - Rebuild transforms ...')
-#         self.train_transform, self.trans_cfg = build_transform(
-#             args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
-        
-#         self.train_transform.set_weak_augment()
-#         self.train_loader.dataset.transform = self.train_transform
-        
-
 # ----------------------- Det + Seg trainers -----------------------
 ## RTCDet Trainer for Det + Seg
 class RTCTrainerDS(object):

+ 1 - 1
train.py

@@ -101,7 +101,7 @@ def parse_args():
                         help='Multi scale')
     parser.add_argument('--ema', action='store_true', default=False,
                         help='Model EMA')
-    parser.add_argument('--min_box_size', default=8.0, type=float,
+    parser.add_argument('--min_box_size', default=1.0, type=float,
                         help='min size of target bounding box.')
     parser.add_argument('--mosaic', default=None, type=float,
                         help='mosaic augmentation.')