|
|
@@ -1599,367 +1599,6 @@ class RTPDetrTrainer(RTDetrTrainer):
|
|
|
self.lr_scheduler.step()
|
|
|
|
|
|
|
|
|
-# ## Real-time PlainDETR Trainer
|
|
|
-# class RTPDetrTrainer(object):
|
|
|
-# def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
|
|
|
-# # ------------------- Basic parameters -------------------
|
|
|
-# self.args = args
|
|
|
-# self.epoch = 0
|
|
|
-# self.best_map = -1.
|
|
|
-# self.device = device
|
|
|
-# self.criterion = criterion
|
|
|
-# self.world_size = world_size
|
|
|
-# self.grad_accumulate = args.grad_accumulate
|
|
|
-# self.clip_grad = 0.1
|
|
|
-# self.heavy_eval = False
|
|
|
-# # close AMP for RT-DETR
|
|
|
-# self.args.fp16 = False
|
|
|
-# # weak augmentatino stage
|
|
|
-# self.second_stage = False
|
|
|
-# self.second_stage_epoch = -1
|
|
|
-# # path to save model
|
|
|
-# self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
|
|
|
-# os.makedirs(self.path_to_save, exist_ok=True)
|
|
|
-
|
|
|
-# # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
|
|
|
-# self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 1e-4, 'lr0': 0.0001, 'backbone_lr_ratio': 0.1}
|
|
|
-# self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.1, 'warmup_iters': 2000} # no lr decay
|
|
|
-# self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
|
|
|
-
|
|
|
-# # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
|
|
|
-# self.data_cfg = data_cfg
|
|
|
-# self.model_cfg = model_cfg
|
|
|
-# self.trans_cfg = trans_cfg
|
|
|
-
|
|
|
-# # ---------------------------- Build Transform ----------------------------
|
|
|
-# self.train_transform, self.trans_cfg = build_transform(
|
|
|
-# args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
-# self.val_transform, _ = build_transform(
|
|
|
-# args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
|
|
|
-# if self.trans_cfg["mosaic_prob"] > 0.5:
|
|
|
-# self.second_stage_epoch = 5
|
|
|
-
|
|
|
-# # ---------------------------- Build Dataset & Dataloader ----------------------------
|
|
|
-# self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
|
|
|
-# self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
|
|
|
-
|
|
|
-# # ---------------------------- Build Evaluator ----------------------------
|
|
|
-# self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
|
|
|
-
|
|
|
-# # ---------------------------- Build Grad. Scaler ----------------------------
|
|
|
-# self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
|
|
|
-
|
|
|
-# # ---------------------------- Build Optimizer ----------------------------
|
|
|
-# self.optimizer_dict['lr0'] *= self.args.batch_size / 16. # auto lr scaling
|
|
|
-# self.optimizer, self.start_epoch = build_rtdetr_optimizer(self.optimizer_dict, model, self.args.resume)
|
|
|
-
|
|
|
-# # ---------------------------- Build LR Scheduler ----------------------------
|
|
|
-# self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
|
|
|
-# self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
|
|
|
-# if self.args.resume and self.args.resume != 'None':
|
|
|
-# self.lr_scheduler.step()
|
|
|
-
|
|
|
-# # ---------------------------- Build Model-EMA ----------------------------
|
|
|
-# if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
|
|
|
-# print('Build ModelEMA ...')
|
|
|
-# self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
|
|
|
-# else:
|
|
|
-# self.model_ema = None
|
|
|
-
|
|
|
-# def train(self, model):
|
|
|
-# for epoch in range(self.start_epoch, self.args.max_epoch):
|
|
|
-# if self.args.distributed:
|
|
|
-# self.train_loader.batch_sampler.sampler.set_epoch(epoch)
|
|
|
-
|
|
|
-# # check second stage
|
|
|
-# if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
|
|
|
-# self.check_second_stage()
|
|
|
-# # save model of the last mosaic epoch
|
|
|
-# weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
|
|
|
-# checkpoint_path = os.path.join(self.path_to_save, weight_name)
|
|
|
-# print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
|
|
|
-# torch.save({'model': model.state_dict(),
|
|
|
-# 'mAP': round(self.evaluator.map*100, 1),
|
|
|
-# 'optimizer': self.optimizer.state_dict(),
|
|
|
-# 'epoch': self.epoch,
|
|
|
-# 'args': self.args},
|
|
|
-# checkpoint_path)
|
|
|
-
|
|
|
-# # train one epoch
|
|
|
-# self.epoch = epoch
|
|
|
-# self.train_one_epoch(model)
|
|
|
-
|
|
|
-# # eval one epoch
|
|
|
-# if self.heavy_eval:
|
|
|
-# model_eval = model.module if self.args.distributed else model
|
|
|
-# self.eval(model_eval)
|
|
|
-# else:
|
|
|
-# model_eval = model.module if self.args.distributed else model
|
|
|
-# if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
|
|
|
-# self.eval(model_eval)
|
|
|
-
|
|
|
-# if self.args.debug:
|
|
|
-# print("For debug mode, we only train 1 epoch")
|
|
|
-# break
|
|
|
-
|
|
|
-# def eval(self, model):
|
|
|
-# # chech model
|
|
|
-# model_eval = model if self.model_ema is None else self.model_ema.ema
|
|
|
-
|
|
|
-# if distributed_utils.is_main_process():
|
|
|
-# # check evaluator
|
|
|
-# if self.evaluator is None:
|
|
|
-# print('No evaluator ... save model and go on training.')
|
|
|
-# print('Saving state, epoch: {}'.format(self.epoch))
|
|
|
-# weight_name = '{}_no_eval.pth'.format(self.args.model)
|
|
|
-# checkpoint_path = os.path.join(self.path_to_save, weight_name)
|
|
|
-# torch.save({'model': model_eval.state_dict(),
|
|
|
-# 'mAP': -1.,
|
|
|
-# 'optimizer': self.optimizer.state_dict(),
|
|
|
-# 'epoch': self.epoch,
|
|
|
-# 'args': self.args},
|
|
|
-# checkpoint_path)
|
|
|
-# else:
|
|
|
-# print('eval ...')
|
|
|
-# # set eval mode
|
|
|
-# model_eval.eval()
|
|
|
-
|
|
|
-# # evaluate
|
|
|
-# with torch.no_grad():
|
|
|
-# self.evaluator.evaluate(model_eval)
|
|
|
-
|
|
|
-# # save model
|
|
|
-# cur_map = self.evaluator.map
|
|
|
-# if cur_map > self.best_map:
|
|
|
-# # update best-map
|
|
|
-# self.best_map = cur_map
|
|
|
-# # save model
|
|
|
-# print('Saving state, epoch:', self.epoch)
|
|
|
-# weight_name = '{}_best.pth'.format(self.args.model)
|
|
|
-# checkpoint_path = os.path.join(self.path_to_save, weight_name)
|
|
|
-# torch.save({'model': model_eval.state_dict(),
|
|
|
-# 'mAP': round(self.best_map*100, 1),
|
|
|
-# 'optimizer': self.optimizer.state_dict(),
|
|
|
-# 'epoch': self.epoch,
|
|
|
-# 'args': self.args},
|
|
|
-# checkpoint_path)
|
|
|
-
|
|
|
-# # set train mode.
|
|
|
-# model_eval.train()
|
|
|
-
|
|
|
-# if self.args.distributed:
|
|
|
-# # wait for all processes to synchronize
|
|
|
-# dist.barrier()
|
|
|
-
|
|
|
-# def train_one_epoch(self, model):
|
|
|
-# metric_logger = MetricLogger(delimiter=" ")
|
|
|
-# metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
|
|
|
-# metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
|
|
|
-# metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
|
|
|
-# header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
|
|
|
-# epoch_size = len(self.train_loader)
|
|
|
-# print_freq = 10
|
|
|
-
|
|
|
-# # basic parameters
|
|
|
-# epoch_size = len(self.train_loader)
|
|
|
-# img_size = self.args.img_size
|
|
|
-# nw = self.lr_schedule_dict['warmup_iters']
|
|
|
-
|
|
|
-# # Train one epoch
|
|
|
-# for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
|
|
|
-# ni = iter_i + self.epoch * epoch_size
|
|
|
-# # Warmup
|
|
|
-# if ni <= nw:
|
|
|
-# xi = [0, nw] # x interp
|
|
|
-# for x in self.optimizer.param_groups:
|
|
|
-# x['lr'] = np.interp(ni, xi, [0.0, x['initial_lr'] * self.lf(self.epoch)])
|
|
|
-
|
|
|
-# # To device
|
|
|
-# images = images.to(self.device, non_blocking=True).float()
|
|
|
-
|
|
|
-# # Multi scale
|
|
|
-# if self.args.multi_scale:
|
|
|
-# images, targets, img_size = self.rescale_image_targets(
|
|
|
-# images, targets, self.model_cfg['max_stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
|
|
|
-# else:
|
|
|
-# targets = self.refine_targets(targets, self.args.min_box_size)
|
|
|
-
|
|
|
-# # xyxy -> cxcywh
|
|
|
-# targets = self.box_xyxy_to_cxcywh(targets)
|
|
|
-
|
|
|
-# # Visualize train targets
|
|
|
-# if self.args.vis_tgt:
|
|
|
-# targets = self.box_cxcywh_to_xyxy(targets)
|
|
|
-# vis_data(images, targets, pixel_mean=self.trans_cfg['pixel_mean'], pixel_std=self.trans_cfg['pixel_std'])
|
|
|
-# targets = self.box_xyxy_to_cxcywh(targets)
|
|
|
-
|
|
|
-# # Inference
|
|
|
-# with torch.cuda.amp.autocast(enabled=self.args.fp16):
|
|
|
-# outputs = model(images)
|
|
|
-# # Compute loss
|
|
|
-# loss_dict = self.criterion(outputs, targets)
|
|
|
-# loss_weight_dict = self.criterion.weight_dict
|
|
|
-# losses = sum(loss_dict[k] * loss_weight_dict[k] for k in loss_dict.keys() if k in loss_weight_dict)
|
|
|
-
|
|
|
-# # Grad Accumulate
|
|
|
-# if self.grad_accumulate > 1:
|
|
|
-# losses /= self.grad_accumulate
|
|
|
-
|
|
|
-# # Reduce losses over all GPUs for logging purposes
|
|
|
-# loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
|
|
|
-# loss_dict_reduced_scaled = {k: v * loss_weight_dict[k] for k, v in loss_dict_reduced.items() if k in loss_weight_dict}
|
|
|
-# losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
|
|
|
-# loss_value = losses_reduced_scaled.item()
|
|
|
-
|
|
|
-# # Backward
|
|
|
-# self.scaler.scale(losses).backward()
|
|
|
-
|
|
|
-# # Optimize
|
|
|
-# if ni % self.grad_accumulate == 0:
|
|
|
-# grad_norm = None
|
|
|
-# if self.clip_grad > 0:
|
|
|
-# # unscale gradients
|
|
|
-# self.scaler.unscale_(self.optimizer)
|
|
|
-# # clip gradients
|
|
|
-# grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
|
|
|
-# # optimizer.step
|
|
|
-# self.scaler.step(self.optimizer)
|
|
|
-# self.scaler.update()
|
|
|
-# self.optimizer.zero_grad()
|
|
|
-# # ema
|
|
|
-# if self.model_ema is not None:
|
|
|
-# self.model_ema.update(model)
|
|
|
-
|
|
|
-# # Update log
|
|
|
-# metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled)
|
|
|
-# metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
|
|
|
-# metric_logger.update(grad_norm=grad_norm)
|
|
|
-# metric_logger.update(size=img_size)
|
|
|
-
|
|
|
-# if self.args.debug:
|
|
|
-# print("For debug mode, we only train 1 iteration")
|
|
|
-# break
|
|
|
-
|
|
|
-# # LR Schedule
|
|
|
-# if not self.second_stage:
|
|
|
-# self.lr_scheduler.step()
|
|
|
-
|
|
|
-# def refine_targets(self, targets, min_box_size):
|
|
|
-# # rescale targets
|
|
|
-# for tgt in targets:
|
|
|
-# boxes = tgt["boxes"].clone()
|
|
|
-# labels = tgt["labels"].clone()
|
|
|
-# # refine tgt
|
|
|
-# tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
|
|
|
-# min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
|
|
|
-# keep = (min_tgt_size >= min_box_size)
|
|
|
-
|
|
|
-# tgt["boxes"] = boxes[keep]
|
|
|
-# tgt["labels"] = labels[keep]
|
|
|
-
|
|
|
-# return targets
|
|
|
-
|
|
|
-# def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
|
|
|
-# """
|
|
|
-# Deployed for Multi scale trick.
|
|
|
-# """
|
|
|
-# if isinstance(stride, int):
|
|
|
-# max_stride = stride
|
|
|
-# elif isinstance(stride, list):
|
|
|
-# max_stride = max(stride)
|
|
|
-
|
|
|
-# # During training phase, the shape of input image is square.
|
|
|
-# old_img_size = images.shape[-1]
|
|
|
-# new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
|
|
|
-# new_img_size = new_img_size // max_stride * max_stride # size
|
|
|
-# if new_img_size / old_img_size != 1:
|
|
|
-# # interpolate
|
|
|
-# images = torch.nn.functional.interpolate(
|
|
|
-# input=images,
|
|
|
-# size=new_img_size,
|
|
|
-# mode='bilinear',
|
|
|
-# align_corners=False)
|
|
|
-# # rescale targets
|
|
|
-# for tgt in targets:
|
|
|
-# boxes = tgt["boxes"].clone()
|
|
|
-# labels = tgt["labels"].clone()
|
|
|
-# boxes = torch.clamp(boxes, 0, old_img_size)
|
|
|
-# # rescale box
|
|
|
-# boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
|
|
|
-# boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
|
|
|
-# # refine tgt
|
|
|
-# tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
|
|
|
-# min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
|
|
|
-# keep = (min_tgt_size >= min_box_size)
|
|
|
-
|
|
|
-# tgt["boxes"] = boxes[keep]
|
|
|
-# tgt["labels"] = labels[keep]
|
|
|
-
|
|
|
-# return images, targets, new_img_size
|
|
|
-
|
|
|
-# def box_xyxy_to_cxcywh(self, targets):
|
|
|
-# # rescale targets
|
|
|
-# for tgt in targets:
|
|
|
-# boxes_xyxy = tgt["boxes"].clone()
|
|
|
-# # rescale box
|
|
|
-# cxcy = (boxes_xyxy[..., :2] + boxes_xyxy[..., 2:]) * 0.5
|
|
|
-# bwbh = boxes_xyxy[..., 2:] - boxes_xyxy[..., :2]
|
|
|
-# boxes_bwbh = torch.cat([cxcy, bwbh], dim=-1)
|
|
|
-
|
|
|
-# tgt["boxes"] = boxes_bwbh
|
|
|
-
|
|
|
-# return targets
|
|
|
-
|
|
|
-# def box_cxcywh_to_xyxy(self, targets):
|
|
|
-# # rescale targets
|
|
|
-# for tgt in targets:
|
|
|
-# boxes_cxcywh = tgt["boxes"].clone()
|
|
|
-# # rescale box
|
|
|
-# x1y1 = boxes_cxcywh[..., :2] - boxes_cxcywh[..., 2:] * 0.5
|
|
|
-# x2y2 = boxes_cxcywh[..., :2] + boxes_cxcywh[..., 2:] * 0.5
|
|
|
-# boxes_bwbh = torch.cat([x1y1, x2y2], dim=-1)
|
|
|
-
|
|
|
-# tgt["boxes"] = boxes_bwbh
|
|
|
-
|
|
|
-# return targets
|
|
|
-
|
|
|
-# def check_second_stage(self):
|
|
|
-# # set second stage
|
|
|
-# print('============== Second stage of Training ==============')
|
|
|
-# self.second_stage = True
|
|
|
-
|
|
|
-# # close mosaic augmentation
|
|
|
-# if self.train_loader.dataset.mosaic_prob > 0.:
|
|
|
-# print(' - Close < Mosaic Augmentation > ...')
|
|
|
-# self.train_loader.dataset.mosaic_prob = 0.
|
|
|
-# self.heavy_eval = True
|
|
|
-
|
|
|
-# # close mixup augmentation
|
|
|
-# if self.train_loader.dataset.mixup_prob > 0.:
|
|
|
-# print(' - Close < Mixup Augmentation > ...')
|
|
|
-# self.train_loader.dataset.mixup_prob = 0.
|
|
|
-# self.heavy_eval = True
|
|
|
-
|
|
|
-# # close rotation augmentation
|
|
|
-# if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
|
|
|
-# print(' - Close < degress of rotation > ...')
|
|
|
-# self.trans_cfg['degrees'] = 0.0
|
|
|
-# if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
|
|
|
-# print(' - Close < shear of rotation >...')
|
|
|
-# self.trans_cfg['shear'] = 0.0
|
|
|
-# if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
|
|
|
-# print(' - Close < perspective of rotation > ...')
|
|
|
-# self.trans_cfg['perspective'] = 0.0
|
|
|
-
|
|
|
-# # build a new transform for second stage
|
|
|
-# print(' - Rebuild transforms ...')
|
|
|
-# self.train_transform, self.trans_cfg = build_transform(
|
|
|
-# args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
-
|
|
|
-# self.train_transform.set_weak_augment()
|
|
|
-# self.train_loader.dataset.transform = self.train_transform
|
|
|
-
|
|
|
-
|
|
|
# ----------------------- Det + Seg trainers -----------------------
|
|
|
## RTCDet Trainer for Det + Seg
|
|
|
class RTCTrainerDS(object):
|